

ZAC Pra de Majou ST MARTIN VESUBIE (06)

Etude géotechnique de conception Phase Avant-Projet (G2AVP)

Dossier: CNI2.L.850.0009

LE BROC CENTER – 1 êre avenue 5600 mètres – 06 510 CARROS LE BROC Tél. 33 (0) 4 92 29 37 10 • Fax 33 (0) 4 92 29 37 29 • cebtp.nice@groupeginger.com

METROPOLE NICE COTE D'AZUR

ZAC PRA DE MAJOU

ST MARTIN VESUBIE (06)

RAPPORT - Etude géotechnique de conception Phase Avant-Projet (G2AVP)

Do	ssier : CNI2.	L.850.0009	Réf. rapport :	CNI2.L.850.0009.0	01		Contrat : CN	I2.L.0131
Indice	Date	Chargée d'affaire	Visa	Vérifié par	Vi	sa	Contenu	Observations
А	05/07/21	S. WAMEJONENGO		M. DECONINCK			41 pages 10 annexes	-
В								

A compter du paiement intégral de la mission, le client devient libre d'utiliser le rapport et de le diffuser à condition de respecter et de faire respecter les limites d'utilisation des résultats qui y figurent et notamment les conditions de validité et d'application du rapport.

Sommaire

Plans de situation	5•
1.1.• Extrait de carte IGN	5•
1.2.• Image aérienne	5•
• • Contexte de l'étude	6•
2.1.• Données générales	6•
2.1.1.• Généralités	6•
2.1.2.• Documents communiqués	6•
2.2.• Description du site	6•
2.2.1.• Topographie, occupation du site et avoisinants	6•
2.2.2.• Contexte géotechnique, hydrogéologique et sismique	7•
2.3.• Caractéristiques de l'avant-projet	8•
2.3.1.• Description des ouvrages	8•
2.3.2.• Terrassements prévus	9•
2.3.3.• Voiries	9•
2.3.4.• Mitoyens	9•
2.4. Mission Ginger CEBTP	9•
• • Investigations géotechniques	
3.1.• Préambule	11•
3.1.• Préambule	11• 11•
3.1.• Préambule	11• 11•
3.1.• Préambule	11• 11•
3.1.• Préambule	11• 11• 11•
3.1.• Préambule	11•11•13•
3.1.• Préambule	
3.1. Préambule	
3.1.• Préambule	
3.1.• Préambule	11•
3.1.• Préambule	11•
3.1.• Préambule	11• 11• 11• 11• 11• 13• 14• 15• 15• 16• 17•
3.1.• Préambule	11• 11• 11• 11• 11• 13• 14• 15• 15• 16• 17• aires 17•
3.1.• Préambule 3.2.• Implantation et nivellement	11• 11• 11• 11• 13• 14• 15• 15• 17• 17• 17•

Page 3/41

• ••	Principes généraux de construction en phase avant-projet	19
6.1	1.• Analyse du contexte et principes d'adaptation	
6.2	2.• Réalisation des terrassements	20
6.3	3.• Soutènements	
	6.3.1.• Remblais renforcés OA1	27•
	6.3.2. Reprise en sous-œuvre soutènement existant par paroi clouée en phasage OA2	31
	6.3.3. Remblais renforcés OA7 + enrochement de pied	35

ANNEXES

• • Missions ultérieures......41•

ANNEXE 1 -	- NOTES GENERALES	SUR LES MISSIONS	GEOTECHNIQUES •
	- NO LLO GENERALLO		

- ANNEXE 2 PLAN D'IMPLANTATION DES SONDAGES.
- **ANNEXE 3 SONDAGES PRESSIOMETRIQUES•**
- **ANNEXE 4 SONDAGES DESTRUCTIFS•**
- ANNEXE 5 PUITS DE RECONNAISSANCE A LA PELLE MECANIQUE•
- ANNEXE 6 NOTES DE CALCULS DE STABILITE DE TALUS (DONT OA3).
- ANNEXE 7 NOTES DE CALCULS DU REMBLAI RENFORCE OA1.
- ANNEXE 8 NOTES DE CALCULS PAROIS CLOUEES OA2•
- ANNEXE 9 NOTES DE CALCULS DES ENROCHEMENTS EN PIED DE L'OA7•
- ANNEXE 10 -NOTES DE CALCULS DU REMBLAI RENFORCE OA7.

•

• • Plans de situation

1.1. Extrait de carte IGN

Source : CartoExplorer 3

1.2. Image aérienne

Source: www.geoportail.gouv.fr

• • Contexte de l'étude

2.1. Données générales

2.1.1. Généralités

Nom de l'opération : ZAC Pra de Majou

Localisation / adresse : 251, route de Nice (RM2565)

Commune : ST MARTIN VESUBIE (06)

Demandeur de la mission et Client : METROPOLE NICE COTE D'AZUR

Assistant Maître d'Ouvrage : Guillaume ROMAN

Documents communiqués

Les documents qui nous ont été communiqués et ont été utilisés dans le cadre de ce rapport sont les suivants :

- plan de définition des emprises du 27/05/21;
- plan de définition des ouvrages du 27/05/21;
- profils 1 à 5 et profil axe du 27/05/21 (fichier ZAC ST MARTIN EXPORT PLAN DE TRAVAIL IND B 270521.dwg);
- MNT sans référence ni date (fichier Lidar_ZA_StMartin.dwg).

2.2. Description du site

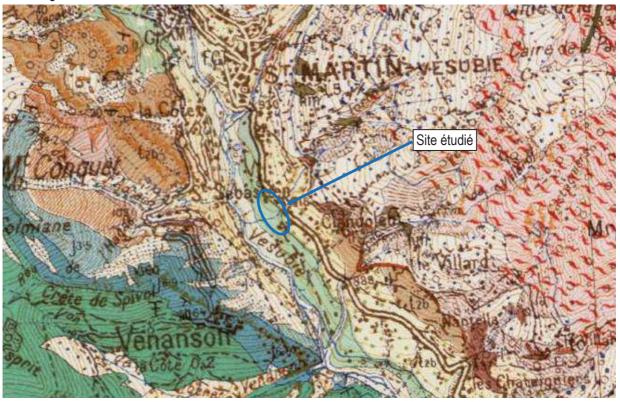
2.2.1. Topographie, occupation du site et avoisinants

Le projet se situe en pied d'un versant penté globalement vers le sud, surmontant la Vésubie. Le site, vraisemblablement aménagé en déblais-remblais, montre plusieurs plateformes, surmontant un talus d'une dizaine de mètres de hauteur, aménagé localement en restanques, en contrehaut du chemin de la Romegiero. Son altitude varie d'environ 918 à 882 m NGF.

Il est bordé par :

- le vallon du Touron, côté sud-est ;
- la RM2565, côté nord-est, soutenue par un mur de diverses natures ;
- le chemin de la Romegiero, côté sud-ouest ;
- côté nord-ouest, par un espace boisé, ainsi que l'aménagement autour d'une chapelle et comprenant un soutènement BA en aval de celle-ci ainsi qu'un transformateur électrique. Le soutènement présente une hauteur maximale, contre la chapelle, de l'ordre de 4 à 5 m.

Lors de notre intervention, deux anciennes constructions avaient été démolies.


L'ouvrage soutenant la RM2565 est disparate : béton globalement sur sa moitié nord-ouest, et en pierres équarries maçonnées sur sa moitié sud-est. Il présente une hauteur variant de 0 (côté nord-ouest) à 5 m (côté sud-est) et un fruit de l'ordre de 10 à 20°. Il s'agit Un caniveau bétonné est présent en pied de cet ouvrage.

Dossier: CNI2.L.850.0009 Indice A du05/07/21 Page 6/41

2.2.2. Contexte géotechnique, hydrogéologique et sismique

D'après notre expérience locale et la carte géologique de ST MARTIN VESUBIE à l'échelle 1/50000, le site serait constitué d'alluvions anciennes et fluvio-glaciaires, vraisemblablement surmontées par des remblais d'aménagement.

Les alluvions gravelo-sableuses à blocs sont visibles en partie basse du site, dans le talus du chemin de la Romegiero, au niveau de l'accotement existant à hauteur de la jonction de la voie d'accès aval du projet avec ce chemin.

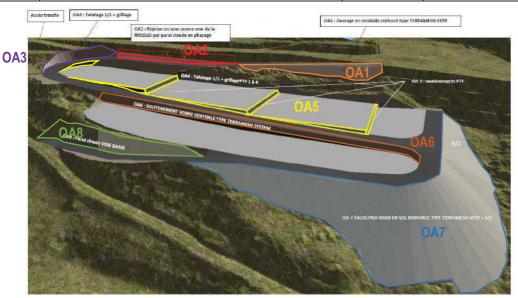
D'un point de vue hydrogéologique, des circulations d'eau de versant, a priori momentanées (épisodes pluvieux), sont probables, en direction de la Vésubie. La nappe d'accompagnement de la Vésubie se développe au sein des alluvions plus récentes au droit et aux abords du lit actuel du cours d'eau, de régime torrentiel.

D'après le zonage sismique de la France (décret n°2010-1255 du 22/10/2010), le site étudié est classé en zone de sismicité 4 (moyenne). L'application des règles parasismiques est obligatoire pour les ouvrages de catégorie d'importance II à IV (Norme NF EN 1998 – Calcul des structures pour leur résistance au séisme).

La MOA souhaite prendre en compte les règles parasismiques uniquement pour les ouvrages pouvant avoir une interaction directe avec les futurs bâtiments, soit, selon les informations de l'AMO, uniquement les ouvrages OA5 des PTF1 à 3, avec une catégorie d'importance II.

La justification parasismique des autres ouvrages n'est pas envisagée par la MOA. La MOE devra valider ce principe.

2.3. Caractéristiques de l'avant-projet


2.3.1. Description des ouvrages

D'après les documents cités au paragraphe 2.1.2 et les informations fournies par l'AMO, le projet comprend l'aménagement d'une Z.A.C., avec voiries d'accès, comprenant 5 plateformes (sur environ 6400 m² au total), dont les caractéristiques sont les suivantes :

PTF	1	2	3	4	5
Surface (m²)	1110	1200	1230	550	2350
Cotes approximatives (m NGF)	908 à 909	905,6 à 906,6	903,4 à 904,4	901,8 à 902,3	899,1 à 902,3

Compte tenu des altimétries prévues pour le projet, les ouvrages suivants sont envisagés :

Ouvrages	Туре	Hauteur (m)	Linéaire approximatif (m)
OA1	Remblais renforcés type Terramesh® vert (pente talus ≈ 70°/H)	0 à 5	60
OA2	Reprise en sous-œuvre soutènement existant par paroi clouée en phasage (pente ≈ 70°/H à subverticale)	0 à 3,5	80
OA3	Talutage à 1/1 + grillage	0 à 5	30
OA4	Talutage à 1/1 + grillage	2 à 4	120
OA5	Soutènement type Terramesh® system	1 à 2	230
OA6	Soutènement type Terramesh® system	3 à 5	160
OA7	Remblais renforcés type Terramesh® vert (pente talus ≈ 3H/2V) et Soutènement en enrochements en pied (H=3 à 4 m)	0 à 17	130
OA8	Paroi clouée (pente ≈ 1H/2V)	0 à 7	75

Dossier : CNI2.L.850.0009 Indice A du05/07/21 Page 8/41

Terrassements prévus

L'aménagement de la zone d'activité nécessitera la réalisation de terrassements en déblais-remblais, d'une amplitude jusqu'à environ 6 m pour les premiers et environ 13 m pour les derniers.

La MOA souhaite que les remblais mis en œuvre dans le cadre du projet permettent la fondation des futurs bâtiments ainsi que la réalisation de dallages sur terre-plein. Toutefois, la règle d'influence entre fondations et pieds de talus (notamment ceux des remblais projetés), dite des « 3 pour 2 » engendrera vraisemblablement la réalisation de fondations profondes pour certains des bâtiments projetés et en fonction de leur implantation précise.

Les matériaux envisagés d'être utilisés pour les remblais renforcés sont constitués par les alluvions du Boréon criblées.

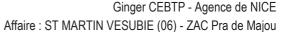
2.3.3. Voiries

Le projet comprend la réalisation de voiries PL sur un linéaire de l'ordre de 550 à 600 m.

2.3.4. Mitoyens

La voirie d'accès depuis la RM2565 sera mitoyenne de l'ouvrage de soutènement existant, sous-jacent à celle-ci et décrit au §2.2.1.

2.4. Mission Ginger CEBTP


La mission de Ginger CEBTP est conforme au contrat n° CNI2.L.0131.

Il s'agit d'une Etude géotechnique de conception Phase Avant-Projet (G2AVP) selon la norme AFNOR NF P 94-500 de novembre 2013 sur les missions d'ingénierie géotechnique.

La mission comprend, conformément au contrat et à la Norme NF P 94-500 de Novembre 2013 les prestations suivantes :

- La définition du contexte géotechnique :
 - première approche du modèle géotechnique,
 - risques naturels (dont approche qualitative du risque de liquéfaction sous séisme),
 - première approche d'un modèle hydrogéologique,
 - dispositions vis à vis des avoisinants et des ouvrages situés dans la Zone d'Influence Géotechnique (ZIG),
- Les principes de construction envisageables (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, améliorations des sols, dispositions générales vis-à-vis des nappes et avoisinants), ainsi qu'une ébauche dimensionnelle par type d'ouvrage géotechnique.

Il est important de préciser que l'étude du projet est décomposée en 2 phases. Le présent rapport rentre dans la première phase et concerne plus précisément les ouvrages suivants : OA1, OA2, OA3 et OA7.

Il convient de rappeler que notre Etude géotechnique de conception Phase Avant-Projet (G2AVP) phase Avant-projet (G2AVP) s'inscrit dans le cadre définit par la Norme NF P 94-500 de Novembre 2013 qui précise que la phase Avant-projet :

- contribue à la mise au point de l'AVP ou de l'APD de l'ouvrage pour la part des ouvrages géotechniques,
- peut compléter le modèle géologique et le contexte géotechnique,
- définit les hypothèses géotechniques à prendre en compte à ce stade et les principes de constructions des ouvrages géotechniques (terrassements, soutènements, pentes et talus, fondations, assises des dallages et des voiries, améliorations des sols, dispositions générales visà-vis des nappes et des avoisinants),
- fournit une ébauche dimensionnelle par type d'ouvrage géotechnique, une première approche des quantités et conclut sur la pertinence d'application de la méthode observationnelle pour une meilleure gestion des risques géotechniques.
- définit, le cas échéant, un programme d'investigations géotechniques spécifiques.

Les résultats de la mission G2 phase AVP, réalisée au stade de l'Avant-Projet, si cette mission n'est pas suivie d'une mission G2 phase PRO, ne peuvent pas être utilisés dans un DCE (Document de Consultation des Entreprises).

• • Investigations géotechniques

3.1. Préambule

Les moyens de reconnaissance et d'essais ont été définis par Ginger CEBTP en accord avec le client.

Il est notable que les forages ont été réalisés avec 2 ateliers de forage.

3.2. Implantation et nivellement

L'implantation des sondages et essais in situ figure sur le plan d'implantation joint en annexe 2. Elle a été définie et réalisée par Ginger CEBTP en fonction du projet, de l'implantation des réseaux enterrés et des possibilités d'accès.

Les coordonnées des têtes de sondages ont été relevées par nos soins en X, Y et Z par un GPS GNSS LEICA (précision : +/- 1 cm). Les coordonnées de chaque tête de sondage est indiquées sur chaque coupe en coordonnées Lambert 93, correspondant au référentiel du plan topographique fourni levé au Lidar.

3.3. Sondages, essais et mesures in situ

Les investigations suivantes ont été réalisées :

Type de sondage	Quantité	Nom	Prof.(m/TA*)
Sondage destructif avec enregistrement des paramètres en	2	SD1	20,0
continu et prélèvement de cuttings		SD2	15,0
Sondage destructif avec enregistrement des paramètres en		SP1	15,0
continu et prélèvement de cuttings		SP2	15,0
Exécution d'essais pressiométriques.		SP3	10,0
Norme NF P94-110-1		SP4	11,0
		SP5	8,0
	12	SP6	10,0
	12	SP7	14,9
		SP8	14,9
		SP9	15,0
		SP10	12,1
		SP11	8,0
		SP12	8,0
	97		
Puits à la pelle hydraulique		PU1	3,1
		PU2	2,2
	6	PU3	1,5
	0	PU4	3,0
		PU5	1,8
		PU6	2,6
Puits de reconnaissance de fondations mitoyennes	2	PU7	1,7
	2	PU8	3,1

^{*}TA: surface du « terrain actuel », soit au moment des investigations

Les coupes des sondages sont présentées en annexes 3 à 5, où l'on trouvera en particulier les renseignements décrits ci-après :

Sondages destructifs :

- coupe approximative des sols*,
- diagraphie des paramètres de forage enregistrés :
 - vitesse d'avancement instantanée (m/h),
 - pression sur l'outil (bars),
 - pression d'injection (bars),
 - couple de rotation (bars).

Essais pressiométriques :

- Module pressiométrique : E_M (MPa),
- Pression limite nette : PI* (MPa),
- Pression de fluage nette Pf* (MPa),
- Rapport E/PI*.

Ces paramètres sont portés directement sur les coupes de forage.

• Puits de reconnaissance à la pelle :

- coupe détaillée des sols,
- prélèvements d'échantillons remaniés,
- photographies de la fouille.

Puits de reconnaissance de fondations :

- coupe détaillée des sols,
- géométrie des structures enterrées,
- photographies de la fouille.

Remarques:

- Les feuilles de sondages peuvent également contenir des informations complémentaires dont les niveaux d'eau éventuels, les pertes de fluide d'injection, les incidents de forage, etc...
- Par ailleurs, les forages de cette campagne d'investigation étant réalisés à l'eau, les niveaux d'eau ne sont pas toujours identifiables ou peuvent être biaisés en raison de leur interférence avec les fluides de forage injectés. Des piézomètres spécifiques sont nécessaires pour caractériser les nappes concernées par le projet (piézomètres sélectifs, en gros diamètre...).

Dossier: CNI2.L.850.0009 Indice A du05/07/21 Page 12/41

^{*} l'interprétation des sols à partir des forages de type destructif est faite uniquement d'après l'examen des cuttings, des courbes de pénétration des sols et des diagraphies.

3.4. Essais en laboratoire

Les essais suivants sont en cours de réalisation :

Identification des sols	Nombre	Norme
Teneur en eau pondérale W	4	NF P94-050
Analyse granulométrique par tamisage	4	NF P94-056
Valeur au bleu du sol (VBS)	4	NF P94-068
Classification des sols (GTR)	4	NF P11-300
Essai de compactage à l'essai Proctor Normal	2	NF P94-093
Indice Portant Immédiat (IPI)	10	NF P94-078

Leurs résultats seront transmis ultérieurement.

• • Synthèse des investigations

4.1. Modèle géologique général : lithologie et caractéristiques mécaniques

Cette synthèse devra être confirmée dans la mission d'étude géotechnique de conception G2 PRO.

La profondeur des formations est donnée par rapport à la surface du terrain tel qu'il était au moment de la reconnaissance (noté TA pour « terrain actuel »).

L'analyse et la synthèse des résultats des investigations réalisées ont permis de dresser la coupe géotechnique schématique suivante, de haut en bas :

Horizon n°1: terre végétale, sols remaniés/remblais

Cet horizon est constitué de sable limoneux à cailloutis, graves et/ou blocs +/- abondants, correspondant vraisemblablement aux remblais d'aménagement du site voire, à proximité du vallon du Touron (SP6 à SP8), à des colluvions.

Epaisseur: 0,5 à 4,0 m

Caractéristiques géotechniques : hétérogènes, faibles à moyennes (sols sous à normalement consolidés)

- Pression limite (PI*): 0,2 à 1,3 MPa moyenne ≈ 0,5 MPa (12 essais)
- Module pressiométrique (E): 1 à 13 MPa moyenne ≈ 3 MPa (12 essais)

Horizon n°2: graves sablo-limoneuses à sables limoneux consolidés à blocs +/- abondants

Cet horizon correspond vraisemblablement aux alluvions fluvio-glaciaires, par ailleurs visibles ponctuellement à l'affleurement en base du talus aval au site.

Dans les zones où les graves et blocs sont peu abondants, la distinction visuelle entre cet horizon et l'horizon n°1 n'est pas évidente. Ainsi, la limite entre ces 2 horizons a été définie sur la base des forages réalisés, à partir des caractéristiques mécaniques et des paramètres de forage (vitesse d'avancement).

Profondeur du toit :

Sondage	SP1	SP2	SP3	SP4	SP5	SP6	SP7
Profondeur (m/TA)	0,5	2,0	3,5	1,0	1,7	3,6	2,2
Cote (m NGF)	905,0	903,5	911,3	908,1	899,5	894,1	890,1
Sondage	SP8	SP9	SP10	SP11	SP12	SD1	SD2
Profondeur (m/TA)	0,5	1,9	0,8	1,5	4,0	2,0	3,0

Profondeur de base : > 20 m (base SD1)

Caractéristiques géotechniques : globalement moyennes à élevées (sols surconsolidés)

- Pression limite (PI*): 1,1 à 6,5 MPa moyenne ≈ 3 MPa (73 essais)
- Module pressiométrique (E) : 9 à >200 MPa moyenne ≈ 62 MPa (73 essais)

A proximité du vallon du Touron, cet horizon montre des caractéristiques pressiométriques globalement plus faibles, avec une nature de sol vraisemblablement moins riche en blocs et graves (PI* \approx 1,7 MPa – E \approx 16 MPa : sols normalement consolidés).

<u>Remarque</u>: nous rappelons qu'il n'est pas toujours évident de distinguer les variations horizontales et/ou verticales éventuelles, inhérentes aux changements de faciès, compte tenu de la surface investiguée par rapport à celle concernée par le projet. De ce fait, les caractéristiques indiquées précédemment ont un caractère représentatif mais non absolu.

4.2. Reconnaissances des fondations

Compte tenu de la présence d'un mitoyen au projet d'OA2, une campagne de reconnaissance de fondations dudit mur de soutènement existant, en amont du site, a été réalisée en supplément de la campagne d'investigations prévue.

En premier lieu, il convient de préciser que la présence d'un caniveau longeant ce mur, côté aval, a rendu difficile l'exécution de ces fouilles. Il est également précisé que la structure et la géométrie exactes (épaisseur(s) et nature des constituants autres que visibles en parement) de ces murs n'est pas connue.

Le puits PU7 n'a pas mis en évidence de fondation. Malgré la présence du caniveau, la fouille a été réalisée en retrait d'environ 0,3 m sous le mur. Il est néanmoins possible que les pierres visibles en surface du mur constituent un parement car celles-ci sont posées « à cheval » sur le caniveau, sur une vingtaine de centimètres. Le mur reposerait ainsi sur des sables graveleux légèrement limoneux à blocs épars, rattachés à l'horizon n°1.

Un mur ancien en pierres maçonnées a par ailleurs été mis en évidence en aval du mur, au droit de PU8, à environ 1,3 m du nu du mur, que nous avons préféré ne pas endommager, dans l'incertitude de son usage.

Les coupes de ces puits de reconnaissance sont insérées en annexe 5, accompagnées de photographies.

4.3. Contexte hydrogéologique général

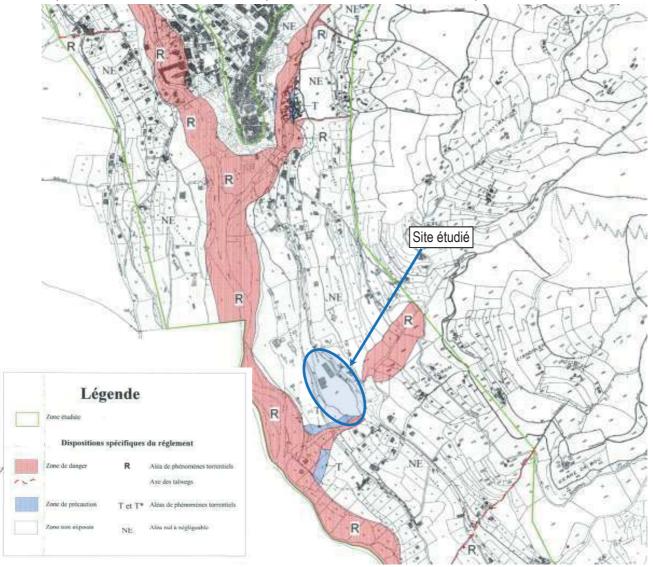
4.3.1. Piézométrie, niveaux d'eau

La présence d'eau a été mise en évidence, lors des investigations par de l'humidité dans le puits de reconnaissance de fondation PU7 et de légers suintements le puits de reconnaissance de fondation PU8, vers 1,3 m de profondeur par rapport à la surface du terrain au moment de notre intervention (TA), correspondant vraisemblablement à de l'accumulation d'eau à l'arrière de la structure enterrée.

Les forages n'ont pas mis d'eau en évidence hormis des résidus de fluide de forage, mais les trous étaient tous éboulés au-delà de 2 à 5 m

Des circulations d'eau de versant, a priori momentanées (épisodes pluvieux), sont probables, en direction de la Vésubie et préférentiellement aux abords du vallon du Touron.

La nappe d'accompagnement de la Vésubie se développe au sein des alluvions plus récentes au droit et aux abords du lit actuel du cours d'eau, de régime torrentiel.


Il est à noter que les niveaux d'eau dans le sol peuvent varier en fonction de la saison et de la pluviométrie. Seule la pose d'un piézomètre accompagné d'un suivi piézométrique, basé sur des mesures en continu, sur une durée d'au moins 1 an, permettrait de statuer clairement sur le régime hydrogéologique au droit du projet.

L'étude du contexte hydrogéologique ne fait pas partie de la présente mission et doit faire l'objet d'une mission spécifique complémentaire (cf. annexe A1 de la norme NFP 94-500).

4.3.2. Inondabilité

D'après le PPR inondation du 28/06/02, la parcelle se situe dans une zone non exposée :

Cette carte montre néanmoins des zones de danger et de précaution au niveau du vallon du Touron, dont le fond se situe en contrebas du futur pied de talus de l'ouvrage prévu en remblai renforcé, côté sud-est du projet (OA7).

Par ailleurs des informations précises sur le risque réel d'inondation peuvent être fournies dans les documents d'urbanisme (P.L.U.) et dépendent des travaux de protection réalisés, donc susceptibles de varier dans le temps. S'agissant de données d'aménagement hydraulique et non de données hydrogéologiques, elles ne font pas partie de notre mission d'étude géotechnique.

4.4. Risques naturels

4.4.1. Risque sismique – données parasismiques réglementaires

Selon le décret n°2010-1255 et la norme NF EN 1998 (EUROCODE 8), les principales données parasismiques déduites des éléments du projet et des reconnaissances effectuées dans le cadre de cette étude et présentées dans les paragraphes précédents, figurent dans le tableau ci-dessous :

	Zone de sismicité	4	
	Classe de sol		
Accélérati	Accélération maximale de référence : agr		
	Paramètre de sol S		
Catégorie d'importa	Catégorie d'importance des ouvrages : OA5 des PTF1 à 3		
Coefficient	Coefficient d'importance correspondant : •I		
Accélé	Accélération de calcul (a _g = ∙l.a _{gr})		
Soutènement OA5	k _h	0,146	
(avec r = 1,5*)	k _v	0,073	

^{*}A valider par MOA/AMO dans le cadre des études ultérieures.

4.4.2. Liquéfaction sous séisme

Compte tenu de la nature à dominante graveleuse (sols drainants), des caractéristiques mécaniques élevées de ces sols au minimum sur les 15 premiers mètres et de l'absence de nappe d'eau pérenne au droit du site, ce risque peut être négligé.

4.4.3. Retrait-gonflement des argiles

D'après les données issues du site Infoterre édité par le BRGM, le projet étudié est situé en exposition moyenne visà-vis du phénomène de retrait-gonflement :

Source: http://infoterre.brgm.fr/

Radon

Le radon est un gaz radioactif, inodore, incolore et inerte chimiquement, présent naturellement dans la croute terrestre dont l'activité radiologique est mesurée en becquerels par mètre cube (Bg/m3).

Le code de la santé publique et de l'environnement intègre désormais le radon en tant que risque naturel dans l'information préventive du public et des travailleurs. Pour certains ouvrages, des dispositions doivent être prises à toutes les phases de la vie d'un ouvrage si la commune est concernée par le risque radon (bâtiment existant, réhabilitation, vente).

Le potentiel radon à l'échelle communale est défini par l'Institut de Radioprotection et de Sûreté Nucléaire (https://www.irsn.fr). Le terrain situé dans la commune de ST MARTIN VESUBIE présente un potentiel radon de catégorie 3.

Les dispositions éventuellement à prévoir ne font pas partie de notre mission et sont à prendre par les concepteurs du projet.

• • Zone d'Influence Géotechnique

Compte tenu de la définition du projet et des terrassements qu'ils nécessitent, la ZIG inclut :

- le vallon du Touron, côté sud-est du projet (OA7);
- la RM2565, côté nord-est, et ses murs de soutènement aval et amont (OA1 et OA2);
- le chemin de la Romegiero, côté sud-ouest(OA8 et OA7);
- le soutènement BA en aval de la chapelle ainsi que le transformateur électrique (OA3), côté nord.

• • Principes généraux de construction en phase avant-projet

6.1. Analyse du contexte et principes d'adaptation

Compte-tenu de ce qui a été indiqué dans les paragraphes précédents, les points essentiels ci-dessous sont à prendre en compte et conduiront les choix d'adaptation du projet :

Contexte géologique et géotechnique :

Contexte géotechnique: formations de caractéristiques mécaniques faibles à moyennes, correspondant vraisemblablement à des sols remaniés voire localement à des colluvions, d'épaisseur variant entre 0,5 et 4 m d'épaisseur, surmontant les alluvions fluvio-glaciaires de caractéristiques mécaniques moyennes à élevées

Environnement du projet :

Projet : aménagement d'une ZAC nécessitant des terrassements en déblais (H_{max} = 6 m)-remblais (H_{max} = 13 m)ainsi que la mise en œuvre d'ouvrages de soutènement et de renforcement de sol sur des hauteurs variables (maximum 17 m pour l'OA7).

Les ouvrages prévus par l'AMO sont rappelés dans le tableau suivant :

Ouvrages	Туре	Hauteur (m)	Linéaire approximatif (m)
OA1	Remblais renforcés type Terramesh vert (pente talus ≈ 70°/H)	0 à 5	60
OA2	Reprise en sous-œuvre soutènement existant par paroi clouée en phasage (pente ≈ 70°/H à subverticale)	0 à 3,5	80
OA3	Talutage à 1/1 + grillage	0 à 5	30
OA4	Talutage à 1/1 + grillage	2 à 4	120
OA5	Soutènement type Terramesh system	1 à 2	230
OA6	Soutènement type Terramesh system	3 à 5	160
OA7	Remblais renforcés type Terramesh vert (pente talus ≈ 3H/2V) et Soutènement en enrochements en pied (H=3 à 4 m)	0 à 17	130
OA8	Paroi clouée (pente ≈ 1H/2V)	0 à 7	75

Enfin, les remblais mis en œuvre dans le cadre du projet devront être d'une qualité support de fondation et de dallage. Les matériaux envisagés d'être utilisés pour les remblais renforcés sont constitués par les alluvions du Boréon criblées.

Les principes de conception et d'exécution relatifs à ces différents ouvrages géotechniques sont détaillés dans les paragraphes suivants.

Nous rappelons que toute modification du projet ou des sols peut entraîner une modification partielle ou complète des adaptations préconisées.

Dossier: CNI2.L.850.0009 Indice A du05/07/21 Page 19/41

6.2. Réalisation des terrassements

<u>Nota</u>: les indications données dans les chapitres suivants, qui sont fournies en estimant des conditions normales d'exécution pendant les travaux, seront forcément adaptées aux conditions réelles rencontrées (intempéries, niveau de nappe, matériels utilisés, provenance et qualité des matériaux, phasages, plannings et précautions particulières). Nous rappelons que les conditions d'exécution sont absolument prépondérantes pour obtenir le résultat attendu et qu'elles ne peuvent être définies précisément à l'heure actuelle. A défaut, seules des orientations seront retenues.

L'aménagement de la zone d'activité nécessitera la réalisation de terrassements en déblais-remblais, d'une amplitude jusqu'à environ 6 m pour les premiers et environ 13 m pour les derniers.

Les remblais mis en œuvre dans le cadre du projet devront être d'une qualité support de fondation et de dallage, sur une épaisseur minimale sous les futurs bâtiment de la Z.A.C.. Les matériaux envisagés d'être utilisés sont constitués par les alluvions du Boréon criblées. Des analyses GTR ont été réalisées pour MNCA sur les matériaux prévus d'être mis en œuvre pour les brèches 2 et 6, classant ces matériaux en D3, soit des matériaux insensibles à l'eau, sans cohésion et perméables (dossier GINGER CEBTP CNI3.L.849.008).

6.2.1.1. Traficabilité en phase chantier

Le niveau du fond de fouille se situera soit dans l'horizon n°1 soit dans l'horizon n°2. Dans l'attente des analyses en laboratoire sur ces matériaux, la présence d'une fraction fine limoneuse et/ou argileuse est manifeste. Cette fraction fine les rend donc sensibles à l'eau.

Par conséquent, les travaux devront être réalisés dans des conditions météorologiques favorables sinon le chantier pourrait rapidement devenir impraticable et nécessiterait la mise en place de surépaisseurs en matériaux insensibles à l'eau.

6.2.1.2. Terrassabilité des matériaux

La présence de blocs pouvant être rencontrés dans l'horizon n°1 et surtout dans l'horizon n°2 pourra nécessiter l'emploi d'engins adaptés ou d'outils adaptés tels qu'éclateur, BRH, dérocteur, etc

6.2.1.3. Forabilité des matériaux

Nous attirons l'attention sur la présence de blocs potentiellement métriques au droit du site. L'entreprise devra mettre en place les outils nécessaires afin de traverser ces matériaux lors des opérations de forage.

6.2.1.4. Drainage en phase chantier

Suite aux observations faites au cours de la campagne d'investigations, le terrain devrait en principe être sec. Cependant, des venues d'eau peuvent apparaître exceptionnellement en cours de terrassement, particulièrement pendant et après les épisodes pluvieux. Elles seront alors collectées en périphérie et évacuées en dehors de la fouille (captage).

Dossier: CNI2.L.850.0009 Indice A du05/07/21 Page 20/41

Les dispositions spécifiques prévisibles seront adaptées au cas par cas pour assurer la mise au sec des plateformes de travail à tout moment.

Un système de drainage à l'interface entre le « terrain naturel » et les remblais mis en œuvre dans le cadre du projet pourrait s'avérer nécessaire (par exemple : épis drainants en fond de déblais à l'amont et dans le sens de la pente vers l'aval). Cette interface sera vraisemblablement propice aux écoulements, pouvant entraîner un lessivage des fines du terrain naturel.

6.2.1.5. Réalisation des remblais

Il est rappelé que le MOA souhaite que les **remblais mis en œuvre dans le cadre du projet soit de qualité** « support de fondation et de dallage », c'est à dire de qualité « couche de forme » sur une épaisseur minimale, à définir en fonction des dimensions des futurs bâtiments.

D'une manière générale, pour permettre une bonne accroche entre le sol d'assise et les remblais, des redans seront réalisés à chaque passe, formant ainsi une interface en escaliers.

Approche des tassements sous le poids des remblais projetés

En premier lieu, bien que l'objet de notre mission ne comprend pas l'étude des fondations des futurs bâtiments, il convient de préciser que l'horizon n°1, compte tenu de ses caractéristiques mécaniques hétérogènes, faibles à moyennes sont susceptibles de tasser sous le poids des futurs remblais.

En première approche, les tassements pourraient s'avérer pluricentimétriques. Par exemple, <u>sans prendre en compte les surcharges d'exploitation ni les descentes de charge sous fondation des futurs bâtiments</u>, pour la PTF6, les tassements différentiels pourraient atteindre, sous l'influence de la variabilité des épaisseurs de remblais projetés entre l'amont et l'aval 3 à 4 cm, pour des tassements absolus de l'ordre de 3 à 5 cm maximum.

En conséquence, sans étude spécifique à ce sujet, relative à chacune des plateformes projetées, nous recommandons la purge intégrale de l'horizon n°1 afin de satisfaire l'objectif des plateformes en support de fondation et de dallage. Dans le cas contraire, l'apparition de désordres sur les futurs bâtiments, sous l'effet de tassements trop importants sous fondation et sous dallage sur terre-plein sont à craindre.

Réutilisation des matériaux du site

Ce point fera l'objet d'un rapport spécifique établi par notre service Routes et contrôles extérieurs, à l'issue des essais en laboratoire, actuellement en cours, particulièrement concernant la mise en œuvre et les contrôles des matériaux.

En première approche, compte tenu de la fraction fine (limono-argileuse), visible sur les échantillons prélevés et dans les puits de reconnaissance à la pelle mécanique, nous considérons que les matériaux du site ne pourront être réutilisés qu'en remblais « généraux » soit jusqu'à 1,5 fois la largeur des semelles de fondation des bâtiments sous lesdites fondations et jusqu'à 0,5 à 1,0 m sous la couche de forme sous dallage.

En conséquence, leur utilisation en couche de forme et remblais support de fondation ou de dallage sera proscrite.

Remblais support de fondation et de dallage contrôlés Dallage sur terre-plein 0.5 à 1.0 m Remblais généraux avec les matériaux du site contrôlés PFT: toit de H2 (après purge H1)

Remblais généraux (possible avec les matériaux du site)

En dehors des emprises des ouvrages en remblais renforcés et des remblais support de fondation et de dallage, les matériaux du site pourront être utilisés en remblais généraux, sous réserve des préconisations suivantes :

- purge préalable de la terre végétale et de l'horizon n°1;
- purge éventuelle des poches médiocres et des sols détrempés par les eaux de pluie,
- réalisation de redans afin de garantir une bonne accroche et limiter les risques de glissement à l'interface terrain naturel/remblais,
- compactage du fond de forme,
- mise en œuvre des remblais par couches, suivant les recommandations GTR, avec contrôle à chaque couche unitaire d'apport et au minimum tous les mètres. Les critères de réception du remblai par essais à la plaque Ø 60 cm, selon le mode opératoire du L.C.P.C., devront être :
 - un module EV2 ≥ 30 MPa,
 - EV2/EV1 ≤ 2.

L'épaisseur de chacune des couches mises en œuvre ne dépassera pas les valeurs limites indiquées dans les recommandations GTR, en tenant compte de la classe de sol et du type d'engin de compactage utilisé.

Remblais support de dallage et de fondation

D'une manière générale, les matériaux, ainsi que les procédures de mise en œuvre et de contrôle devront répondre aux recommandations « Caractéristiques des matériaux de remblais supports de fondations » du L.C.P.C. de 1980 et/ou au DTU 13.3.

Les matériaux d'apport devront être insensibles à l'eau (VBS < 0,2), par exemple de type B31, C1B31, C2B31, D21 ou D31, avec une granulométrie 0/300.

En première approche, les matériaux prévus d'être utilisés pour les remblais renforcés, en provenance du Boréon (dossier GINGER CEBTP CNI3.L.849.008 - brèches 2 et 6 - matériaux D3), pourront être utilisés, sous réserve des résultats des essais LA/MDE permettant d'évaluer leur dégradabilité assurant une classe D31.

La mise en œuvre des remblais sera réalisée moyennant les précautions successives suivantes :

- purge de la terre végétale et de l'horizon n°1;
- purge éventuelle des poches médiocres et des sols détériorés par les engins de terrassement ou les eaux de pluie,
- réalisation de redans afin de garantir une bonne accroche et limiter les risques de glissement à l'interface terrain naturel ou remblais généraux/remblais,
- compactage du fond de forme,
- mise en œuvre des remblais par couches, suivant les recommandations GTR, avec contrôle à chaque couche unitaire d'apport et au minimum tous les mètres. Les critères de réception du remblai par essais à la plaque Ø 60 cm, selon le mode opératoire du L.C.P.C., devront être :
 - un module EV2 ≥ 50 MPa,
 - EV2/EV1 ≤ 2.

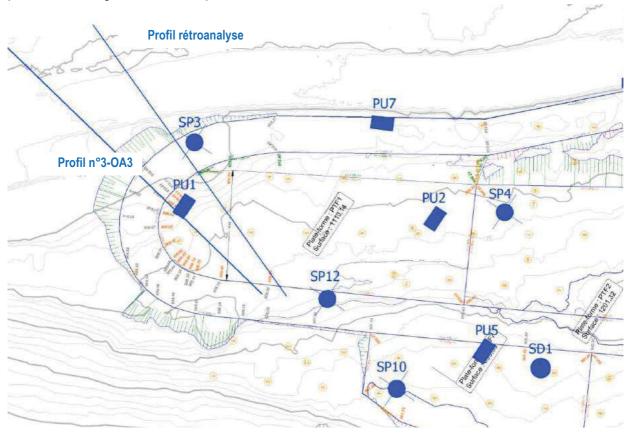
L'épaisseur de chacune des couches mises en œuvre ne dépassera pas les valeurs limites indiquées dans les recommandations GTR, en tenant compte de la classe de sol et du type d'engin de compactage utilisé.

- Les critères de réception de l'arase du remblai par essais à la plaque Ø 60 cm, selon le mode opératoire du L.C.P.C., devront être :
 - un module EV2 ≥ 50 MPa,
 - EV2/EV1 ≤ 2,
 - Kw > 50 MPa/m (DTU 13.3 relatif aux dallages industriels).

6.2.1.6. Talus

Hors mitoyenneté et présence d'eau, les talus **provisoires** des fouilles pourront être dressés avec une **pente maximale de 1 de base pour 1 de hauteur**, à adapter lors des terrassements si cela s'avère nécessaire.

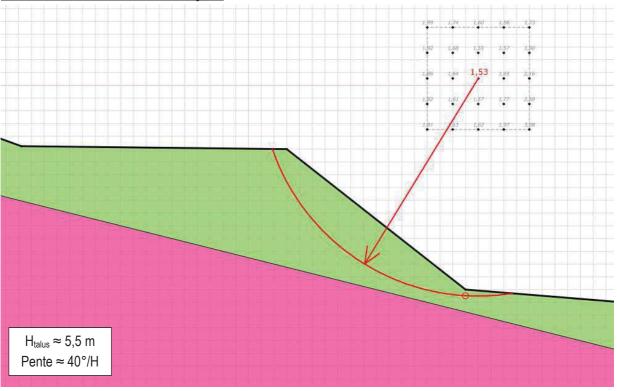
Des hétérogénéités locales peuvent cependant être rencontrées au fur et à mesure de l'ouverture des fouilles et provoquer des éboulements locaux. Ces pentes pourront ainsi faire l'objet d'adaptation en cours de chantier. L'ensemble des talus devra être :

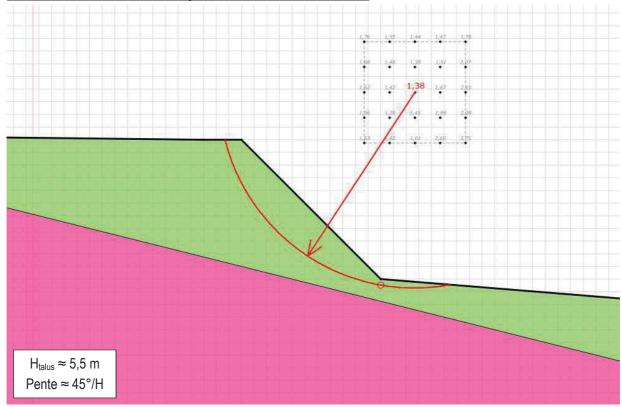

- purgé des éventuels blocs instables ;
- protégé des intempéries par des feuilles de polyane par exemple soigneusement fixées, des cunettes étanches en tête de talus.

Pour des hauteurs de talus supérieures à 6 m ou pour des talus plus raides, un confortement/soutènement est à prévoir. Son dimensionnement fera l'objet d'une étude particulière spécifique.

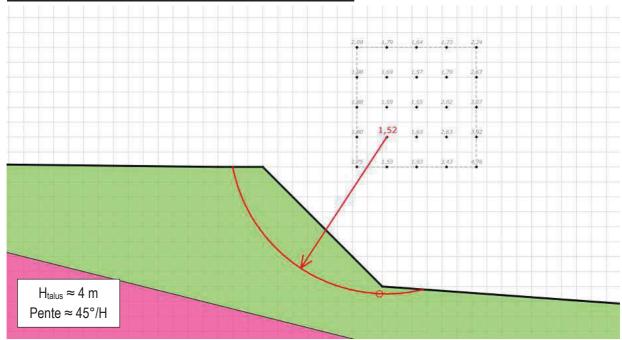
Au stade G2AVP (à préciser dans les études G2PRO et/ou G3), hors mitoyenneté et présence d'eau, les talus **définitifs** pourront être dressés avec une **pente maximale de** :

- 1 de base pour 1 de hauteur pour une hauteur maximale de 4 m;
- 35 à 40°/l'Horizontale pour une hauteur maximale de l'ordre de 5,5 à 6 m. Une végétalisation rapide est nécessaire pour éviter les phénomènes de ravinement.

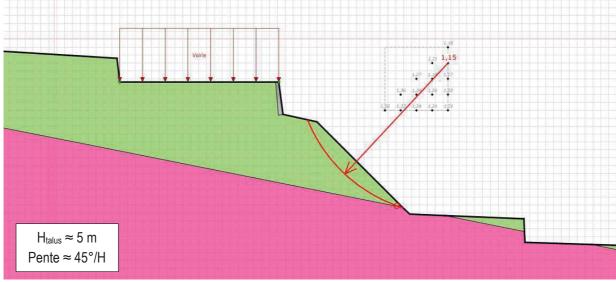

Ces pentes de talus sont justifiées en fonction des observations actuelles, sur la base de calculs en rétroanalyse sur un des talus à hauteur du futur OA3, et sans prendre en compte de séisme, comme souhaité par la MOA, permettant le calage des caractéristiques de l'horizon n°1:


Dossier: CNI2.L.850.0009 Indice A du05/07/21 Page 23/41

Résultats des calculs en rétroanalyse :



Résultats des calculs des talus provisoires dans l'horizon n°1 :


Résultats des calculs des talus définitifs dans l'horizon n°1 :

Les notes de calculs sont reportées en annexe 6. L'ensemble de ses calculs ont été réalisé sans coefficient partiel (calcul unitaire), et sans paramètre sismique, afin d'assurer la stabilité avec une sécurité suffisante, les coefficients visés sont donc :

- 1,3 pour les phases provisoires ;
- 1,5 pour les phases définitives.

Il est ainsi notable que pour les talus supérieurs à 4 m de hauteur de l'**OA3**, qui plus est à proximité du soutènement aval à la RM2565, la stabilité n'est pas assurée avec une sécurité suffisante avec une pente à 1/1, comme mis en évidence sur le profil n°3 (objectif coefficient de sécurité : 1,5) :

Dans les zones où la pente ne pourra être adoucie, comme c'est le cas au droit du profil n°3, un confortement de talus (paroi clouée par exemple) ou un ouvrage de soutènement devra être envisagé.

Il est toutefois notable que l'horizon n°1 est apparu hétérogène. Les caractéristiques c'/• ' définies dans cet horizon par le calcul en rétroanalyse à proximité du profil n°3-OA3 ci-dessus sont représentatives de cette zone du projet, bien qu'assez élevées au regard des mesures pressiométriques au sein du sondage SP3, mais pas nécessairement de l'ensemble de cet horizon sur le site.

Une adaptation zone par zone des pentes de talus ci-avant pourra donc s'avérer nécessaire et devra être étudiée dans les missions géotechniques ultérieures (G2PRO et G3).

6.3. Soutènements

Le projet prévoit l'exécution des soutènements suivants :

Ouvrages	Туре	Hauteur (m)	Linéaire approximatif (m)
OA1	Remblais renforcés type Terramesh® vert (pente talus ≈ 70°/H)	0 à 5	60
OA2	Reprise en sous-œuvre soutènement existant par paroi clouée en phasage (pente ≈ 70°/H à subverticale)	0 à 3,5	80
OA5	Soutènement type Terramesh® system	1 à 2	230
OA6	Soutènement type Terramesh® system	3 à 5	160
OA7	Remblais renforcés type Terramesh® vert (pente talus ≈ 3H/2V) et Soutènement en enrochements en pied (H=3 à 4 m)	0 à 17	130
OA8	Paroi clouée (pente ≈ 1H/2V)	0 à 7	75

Ces ouvrages pourront être calculés en adoptant les hypothèses de sol issues des essais réalisés spécifiquement (pressiométriques, triaxiaux ou cisaillement...).

En l'absence d'essais spécifiques, on pourra retenir provisoirement les caractéristiques géomécaniques suivantes, fournies à titre indicatif uniquement :

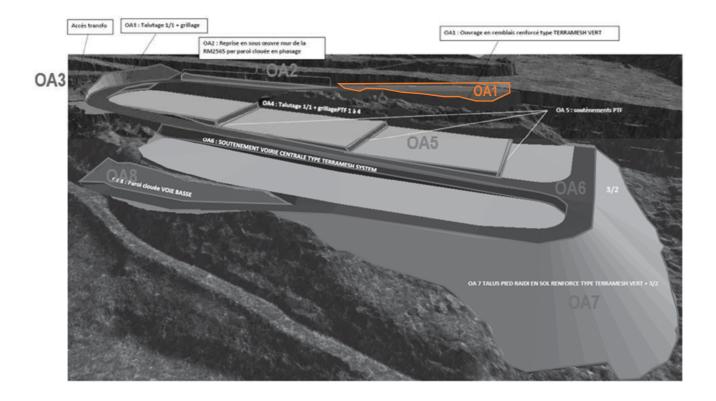
Horizon	Type de sel	o. (IcN1/m3)	Long terme		
110112011	Type de sol	γ (kN/m ³)	φ' (°)	c' (kPa)	
1	Remblais	19	25 à 40	0 à 5	
2	Graves sableuses à sables graveleux	20	40 à 45	0	

Les hypothèses présentées, ci-dessus et ainsi que celles présentées dans chaque § relatif au différents ouvrages détaillés ci-dessous, sont celles prises en compte dans les présentes justifications au stade G2AVP. Elles devront impérativement être validées dans les missions géotechniques ultérieures (G2PRO et G3).

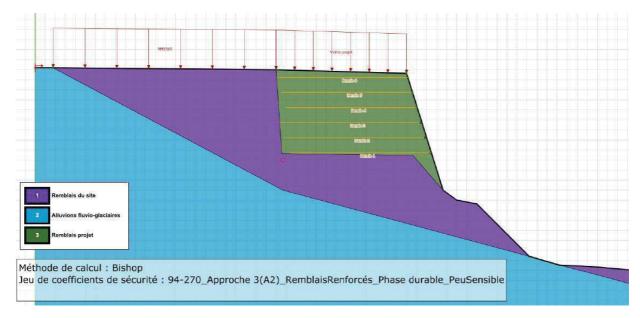
Les principes de construction envisagés sont compatibles avec le modèle géotechnique, hormis la « reprise en sousœuvre du soutènement existant par paroi clouée en phasage » qui mérite une attention particulière pour les points suivants :

- Absence de données au droit de la RM2565;
- Absence de fondation du mur de soutènement aval à cette voirie ;
- Evaluation imprécise des déplacements au regard des méthodes de calculs pour ce type d'ouvrage.

En tout état de cause, les pentes de talus sécuritaires évoqués dans le § 6.2.1.6 ne seront pas réalisables. En conséquence, si le choix de cette solution est maintenu, il conviendra d'effectuer des tests de tenue sur un linéaire de 2 à 3 m de long maximum. Les missions G2PRO et G3 s'attacheront, sur la base de ce(s) test(s), à justifier des longueurs de passes maximales, éventuellement à adapter au moment du chantier (G3+G4 Phase Suivi).


A notre sens, la réalisation d'un écran de type microberlinoise apparait plus sécuritaire, particulièrement au regard de la stabilité de la RM2565 pendant les travaux, ayant un impact direct sur l'usage de la voirie ainsi que sur la sécurité des ouvriers et des usagers.

GINGER CEBTP recommande la réalisation d'un diagnostic spécifique à cette partie du projet, incluant des reconnaissances complémentaires : sur l'ouvrage de soutènement de la RM2565 (épaisseur de haut en bas, structure, fondation à confirmer sur le linéaire impacté) mais également sur les sols qu'il soutient.


Les ébauches dimensionnelles pour chaque ouvrage projeté sont présentées ci-après.

6.3.1. Remblais renforcés OA1

Ouvrages	Туре	Hauteur (m)	Linéaire approximatif (m)
OA1	Remblais renforcés type Terramesh® vert (pente talus ≈ 70°/H)	0 à 5	60

6.3.1.1. Hypothèses de calcul

- Coupe étudiée : profil transversal de la Z.A.C. n°4 (hauteurs de remblai et talus définitif maximales soit respectivement 4,6 et 5,9 m)
- Modèle géotechnique :

Horizon	Epaisseur	PI* (MPa)	Ем (МРа)	γ (kN/m³)	c' (kPa)	• ' (°)
1	3,5 m	0,5	3	19	2	38
2	-	-	-	20	0	40
Remblais projet	4,6	-	-	20	0	36

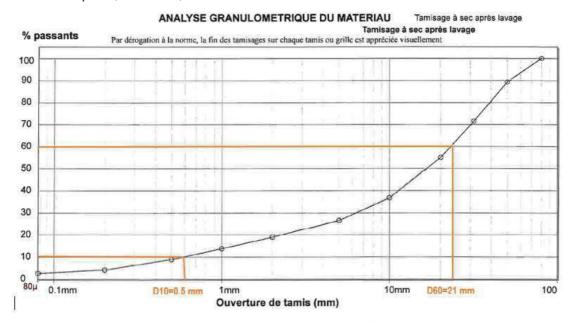
Légende :

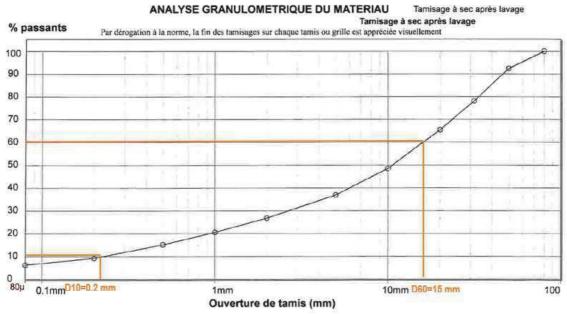
 PI^* : pression limite équivalente E_M : module pressiométrique

γ : poids volumique c' : cohésion effective

• ': angle de frottement effectif

Les caractéristiques des horizons en place ont été évaluées sur la base de calculs en rétroanalyse sur les talus du profil considéré. Les résultats sont comparables aux calculs en rétroanalyse réalisés dans le cadre de l'étude du talutage (cf. §6.2.1.6).


- Surcharges routières : 20 kN/m² (RM2565 et voirie projet)
- Caractéristiques des renforcements :
 - Bandes géosynthétiques PET (modélisation : largeur 1 m tous les 1 m)• ρ_{flu} = 1/3
 - TR min = 25 kN (en prenant en compte yM; t = 1,25)
- Caractéristiques remblais projet :


En première approche, les matériaux prévus d'être utilisés pour les remblais renforcés, en provenance du Boréon (dossier GINGER CEBTP CNI3.L.849.008 - brèches 2 et 6 - matériaux D3), pourront être utilisés, sous réserve des résultats des essais LA/MDE permettant d'évaluer leur dégradabilité assurant une classe D31. Les caractéristiques ici prises en compte correspondent à ce type de matériaux.

En fonction des granulométries réalisées dont les graphiques sont reportés ci-dessous, les paramètres suivants, tirés de la norme NF P 94-270 (tableau G.2.1) ont été pris en compte :

- $\mu_0 = 1.3$ (Cu = 42 à 71 soit > 2)
- $\mu_1 = 0.9$ *tan• ' = 0.654

- Sols D3 concassés : conditions de mises en œuvre sévères pend = 0,67
- PH estimé entre 4 et 9 classe de durée d'utilisation : 4 (50 ans) ρ_{deg} = 0,83
- Règles de construction parasismiques non prises en compte conformément au choix du MOA (à valider par la MOE)
- Parement prévu avec le procédé Terramesh vert (non pris en compte dans les justifications)
- Hydrogéologie : absence de nappe pérenne (le parement devra permettre le drainage du massif)
- Facteur partiel de modèle : γR ;d = 1,1 (Phase durable ouvrage non sensible RM2565 déjà stable avec le soutènement existant)

6.3.1.2. Principe de justification

Les justifications de cet ouvrage devront respecter la norme NF P 94-270 :

- Stabilité externe locale ELU fondamental et ELS en Approche de calcul 2 :
 - Poinçonnement
 - Tassements
 - Glissement
- Stabilité externe générale ELU fondamental en Approche de calcul 3 (Talren)
- Stabilité interne ELU fondamental en Approche de calcul 2 :
 - Résistance structurelle des renforcements
 - Résistance d'interaction sol-renforcement
- Stabilité mixte ELU fondamental en Approche de calcul 3 (Talren)

6.3.1.3. Résultats

La note de calculs de justification de la stabilité externe locale ainsi que l'ensemble des calculs de stabilité, réalisés à partir du logiciel Talren, développé par la société Terrasol, sont reporté en annexe 7 du présent rapport. Les justifications relatives à la résistance interne seront réalisées dans les missions géotechniques ultérieures.

Les nappes de géotextile, avec TR min = 25 kN (valeur incluant les différents coefficients de réduction ρ ainsi que le facteur partiel $\gamma_{M,t}$ = 1,25), présenteront les longueurs (dans le sens transversal) et espacements suivants :

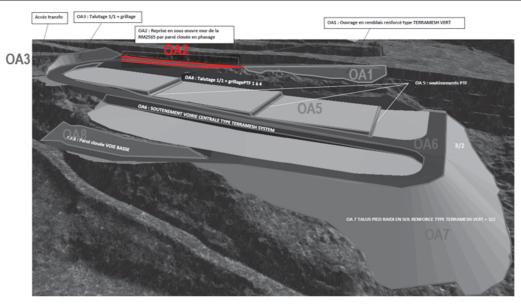
	Longue	eur (m)	Espacement vertical (m)
Nappes géosynthétiques PET	Bande 1		
avec:	Bande 2	7,0	
Largeur = 1 m	Bande 3		0,75
Espacement horizontal = 1 m	Bande 4		0,73
TRmin = 25 kN	Bande 5	6,5	
	Bande 6		

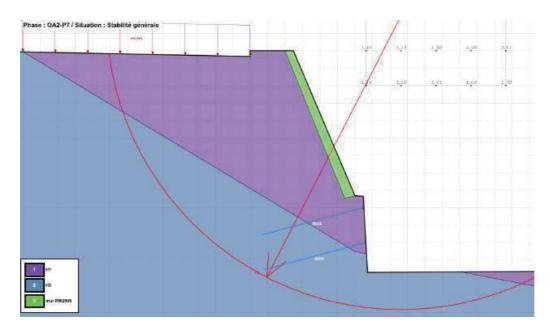
Nota: Numérotation des bandes de bas en haut

Il est notable que les tassements évalués au sein de l'horizon n°1 sont évalués entre 4 et 6 cm. Si ces valeurs paraissent trop importantes pour les MOA et MOE, une purge de celui-ci devra être envisagée.

6.3.1.4. Sujétions d'exécution

Les remblais seront mis en œuvre sur une surface plane, préalablement préparée.


Si cela nécessite localement des déblais importants, à proximité d'ouvrage(s) mitoyen(s), comme cela sera vraisemblablement le cas être le cas au droit du profil n°4 étudié dans le cadre de l'ébauche, toutes les précautions devront être prises afin d'assurer leur stabilité (calculs de stabilité, ouvrage de soutènement provisoire éventuel...). L'assise des remblais pourra être constituée par l'horizon n°1 ou par l'horizon n°2.


Les matériaux prévus d'être mis en œuvre étant de classe D3 (GTR2000), ils pourront être mis en œuvre avec une épaisseur correspondant à l'espacement vertical des bandes géosynthétiques.

6.3.2. Reprise en sous-œuvre soutènement existant par paroi clouée en phasage OA2

Ouvrages	Туре	Hauteur (m)	Linéaire approximatif (m)
OA2	Reprise en sous-œuvre soutènement existant par paroi clouée en phasage (pente ≈ 70°/H à subverticale)	0 à 3,5	80

Nous rappelons nos réserves (cf. §6.3) concernant cette solution ne garantissant pas, à ce stade des connaissances du site (particulièrement concernant l'ouvrage de soutènement existant et soutenant la RM2565 ainsi que les sols qu'il soutient) la stabilité en phase provisoire.

Dossier : CNI2.L.850.0009 Indice A du05/07/21 Page 31/41

6.3.2.1. Hypothèses de calcul

Coupe étudiée : profil transversal OA2 n°7 avec :

Distance paroi clouée – soutènement RM2565 (m)	Hauteur paroi clouée (m)	Hauteur soutènement RM2565 (m)
0,5	2,3	4,2

Cette coupe est a priori la plus défavorable en termes de hauteur totale de soutènement (soutènement RM2565+paroi clouée).

Modèle géotechnique :

Horizon	Epaisseur	PI* (MPa)	qs* (kPa)	γ (kN/m³)	c' (kPa)	• ' (°)
1	1,7 m	0,5	négligé	19	4	38
2	-	3	190	20	0	40

Légende :

 Pl^* : pression limite équivalente E_M : module pressiométrique γ : poids volumique c': cohésion effective

• ': angle de frottement effectif

Les caractéristiques des horizons en place ont été évaluées sur la base de calculs en rétroanalyse sur les talus du profil considéré. La cohésion dans l'horizon n°1 a ainsi été majorée par rapport aux précédents calculs, de nombreuses incertitudes sur le modèle existant (structure du soutènement de la RM2565, profondeur de base de l'horizon n°1).

Conformément à la norme NF P 94-270, le frottement latéral unitaire (qs) est défini sur la base de l'Additif Clouterre 2002. Au stade G2AVP, le frottement dans l'horizon n°1 est négligé. Toutefois, des essais d'arrachement préalables menés à la rupture, réalisés in situ sur clous seront nécessaires afin de fixer définitivement la valeur du frottement latéral unitaire limite de chaque horizon géotechnique.

L'épaisseur de l'horizon n°1 a été fixée à 1,7 m sous toutes réserves, aucun sondage n'ayant été réalisé directement dans cette partie du projet.

- Surcharges routières : 20 kN/m² (RM2565 et voirie projet)
- Caractéristiques des renforcements :
 - Corrosion : I fortement corrosif (ΣA+C = 13) perte d'épaisseur = 3,3 mm (durée d'utilisation = 50 ans)
 - Barres de type GEWI 32 (Rt ;d = 200 kN minoration γM comprise)
- Règles de construction parasismiques non prises en compte conformément au choix du MOA (à valider par la MOE)
- Parement en béton projeté armé (non pris en compte dans les justifications)
- Hydrogéologie: absence de nappe pérenne (dispositifs de drainage à prévoir cf. §6.3.2.4)
- Facteur partiel de modèle : yR ;d = 1,2 (Phase durable ouvrage sensible : RM2565)

6.3.2.2. Principe de justification

Les justifications de cet ouvrage devront respecter la norme NF P 94-270 :

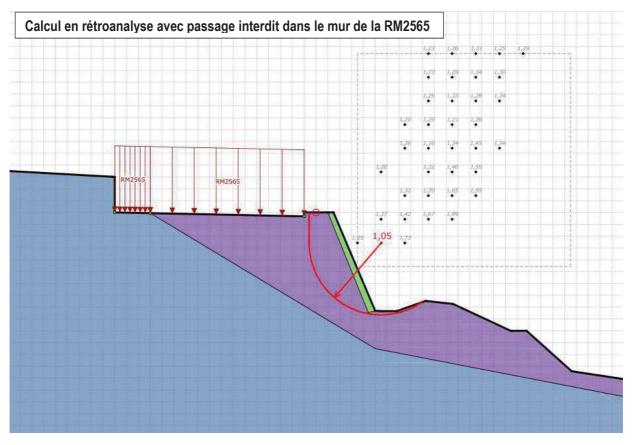
- Stabilité externe locale ELU fondamental en Approche de calcul 3 :
 - Poinconnement
 - Glissement
- Stabilité externe générale ELU fondamental en Approche de calcul 3 (Talren)
- Stabilité interne ELU fondamental en Approche de calcul 3 :
 - Résistance structurelle des renforcements
 - Résistance d'interaction sol-renforcement
- Stabilité mixte ELU fondamental en Approche de calcul 3 (Talren)

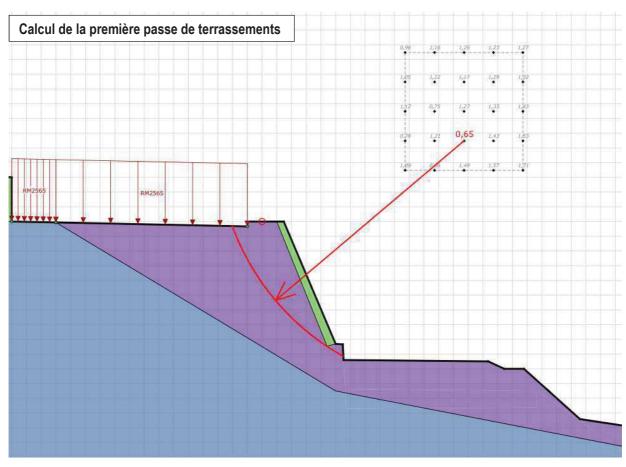
6.3.2.3. Résultats

L'ensemble des calculs de stabilité, réalisés à partir du logiciel Talren, développé par la société Terrasol, sont reportés en annexe 8 du présent rapport.

Les justifications relatives à la stabilité externe locale ainsi qu'à la stabilité interne seront réalisées dans les missions géotechniques ultérieures (missions G2PRO et G3).

Les calculs ont conduit à l'ébauche suivante :


Lit	Armature	Ø _{forage} (mm)	Longueur	Inclinaison/Hor. Esp		ement (m)	
LIL	Aimature	Prorage (IIIII)	(m)	(°)	V	Н	
Clou 1	GEWI32	90	3	15	1	1	
Clou 2	GLVVIJZ	30	3	13	ı	ı	


Nota : Numérotation des clous de haut en bas

Il est toutefois notable que, malgré l'augmentation de la cohésion dans l'horizon n°1 dans le cadre du calage des paramètres, la stabilité de ce procédé constructif (paroi clouée) n'est pas assurée dès la première passe de terrassement. Au-delà de la valeur exacte du coefficient de sécurité global obtenu pour celle-ci, il est intéressant d'observer que la baisse du facteur global de sécurité de l'ordre de 0,4 est très significative et traduit un aléa certain. Les graphiques présentés ci-dessous illustrent ces résultats.

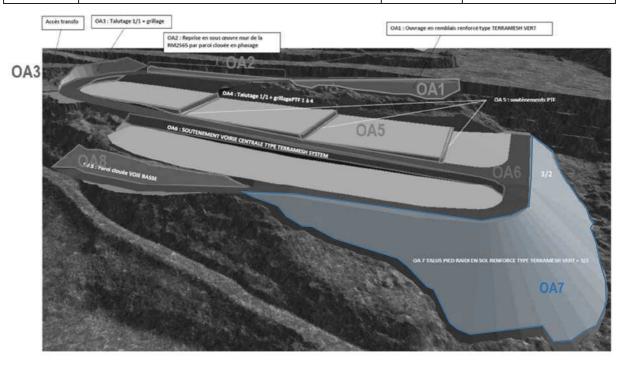
A ce stade des études et de la connaissance du site, la réalisation d'un écran de soutènement en remplacement de la paroi clouée apparaît ainsi opportune.

6.3.2.4. Sujétions d'exécution et dispositions constructives

La réalisation de la paroi clouée sera conforme à la norme NF P 94-270.

Compte tenu des risques d'instabilité avant réalisation totale de la paroi, il paraît opportun de réaliser des tests de tenue sur un linéaire de 2 à 3 m de long maximum. Les missions G2PRO et G3 s'attacheront, sur la base de ce(s) test(s), à justifier des longueurs de passes maximales, éventuellement à adapter au moment du chantier (G3+G4 Phase Suivi).

Un complexe drainant, de type Delta-MS ou enkadrain, sera mis en place à l'arrière du parement, par bande de largeur 0,5 m entre chaque rangée de clous. Le dispositif sera complété par un exutoire adapté en pied (récupération des eaux drainées par l'enkadrain dans un drain longitudinal en pied de la paroi).


Un réseau de barbacanes sera également prévu avec un diamètre minimal de 6 cm. La maille des barbacanes ne sera pas supérieure à 4 m².

Un système de drainage devra être mis en place en pied et tête du mur, (fossé/cunette, évacuation vers exutoire adapté).

En cas de rencontre de venues d'eau dans les forages, la réalisation de drains horizontaux pourra s'avérer nécessaire.

6.3.3. Remblais renforcés OA7 + enrochement de pied

Ouvrages	Туре	Hauteur (m)	Linéaire approximatif (m)
OA7	Remblais renforcés type Terramesh® vert (pente talus ≈ 3H/2V) et Soutènement en enrochements en pied (H=3 à 4 m)	0 à 17	130

En préambule, il est notable que pour des remblais de grandes hauteurs, comme prévus pour l'OA7, la réalisation de risbermes successives pourrait être judicieuse, particulièrement pour l'entretien.

6.3.3.1. Enrochements de pied

a) Assise des enrochements

Aucune investigation n'a été réalisée dans le fond du vallon. Le modèle dans cette zone devra être préciser dans les phases ultérieures du projet.

Un ancrage au sein de l'horizon n°2 est ici pris en compte avec l'hypothèse d'un toit proche de la surface, soit à moins d'1 m de profondeur para rapport au terrain naturel.

Un ancrage d'au moins 0,5 m y sera réalisé avec un encastrement minimal (par rapport au terrain fini) pour la mise hors-gel de 0,8 m.

En fonction de ces conditions, la contrainte aux états limites de service à retenir, pour une charge verticale centrée, est de 0,43 MPa (q_{net} = 1,2 MPa).

Par ailleurs, les fondations établies à proximité de talus ainsi que des fondations voisines devront respecter la règle des 3 de base pour 2 de hauteur entre arêtes de base d'enrochements et les pieds de talus (NF P 94-261), à moins de dispositions particulières spécifiques.

La mise en œuvre d'un béton de propreté immédiatement après réalisation des fouilles d'assise des enrochements est recommandée.

Enfin, une étude hydraulique serait appropriée afin de définir le régime du Vallon du Touron dans le but d'analyser les risques d'affouillements et adapter l'encastrement de l'ouvrage en conséquence.

Affaire: ST MARTIN VESUBIE (06) - ZAC Pra de Majou

b) Hypothèses de calculs

- Coupe étudiée : profil transversal OA7 n°5 (hauteurs de remblai et talus définitif maximales soit respectivement 12,5 et 17,0 m) avec un soutènement en enrochement de 4 m de hauteur
- Modèle géotechnique :

Horizon	Epaisseur (m)	• (kN/m³)	c' (kPa)	• ' (°)	PI (MPa)	EM (MPa)
1	≈1 à 2	19	0	30	0,5	
2	-	20	0	40	1,2	
Remblais projet	12,5	20	0	36	-	
Enrochements	-	18	0	45	-	

Les paramètres retenus dans l'horizon n°1 sont plus faibles que pour les autres ouvrages.

- Hydrogéologie: aucun niveau d'eau n'est pris en compte dans les calculs (drainage des ouvrages à prévoir); <u>l'étude hydraulique pourra par ailleurs induire une justification à la décrue</u>
- Surcharge : aucune surcharge impactant l'ouvrage
- Règles de construction parasismiques non prises en compte conformément au choix du MOA (à valider par la MOE)

c) Principes de justification

Les enrochements sont justifiés suivant la norme relative aux soutènements (NF P 94-281 d'avril 2014), incluant les vérifications suivantes.

Aux Etats Limites Ultimes:

- Stabilité externe incluant précisément :
 - La portance du sol support (approche 2), visant à vérifier la capacité portante du sol d'assise et une limitation de l'excentrement à 7B/15;
 - Le glissement sur la base du mur (approche 2), visant à vérifier la résistance au glissement du mur sur sa base.
- Stabilité générale (approche 3), visant à vérifier qu'un glissement général, passant sous la base de l'ouvrage peut être écarté.

Aux Etats Limites de Service :

Les justifications suivantes, relatives à la stabilité externe de l'ouvrage, sont étudiées aux ELS :

- Limitation de la charge transmise au sol
- Excentrement du chargement (excent. ≤ B/4)
- Admissibilité des tassements

L'ouvrage de soutènement en enrochements est considéré comme un ouvrage-poids monolithique.

Les calculs relatifs à la stabilité externe ont été menés avec le logiciel GEOMUR, développé par le bureau d'études GEOS. Les calculs visant à justifier la stabilité générale de l'ouvrage ont été menés avec le logiciel Talren, développé par la société Terrasol.

Les coefficients partiels pris en compte correspondent à l'Eurocode 7 et sont détaillés sur les notes de calculs en annexe 9.

Dossier: CNI2.L.850.0009 Indice A du05/07/21 Page 37/41

Par ailleurs, la justification vis-à-vis de stabilité interne des enrochements (stabilité de chaque bloc au glissement vis-à-vis des efforts de poussée du sol) devra être réalisée dans le cadre des missions ultérieures (G2PRO et G3), en fonction des dimensions des blocs utilisés pour le chantier.

d) Résultats

Les résultats de l'ébauche réalisée sont présentés dans le tableau suivant :

Hauteur de calculs (m)	Fruit du parement / la Verticale (°)	Fruit arrière / la Verticale (°)	Largeur en base (m)	Largeur en tête (m)
≈ 4	20	10	2	1

Compte tenu des caractéristiques mécaniques dans l'horizon d'assise des enrochements (H2), les tassements au droit de l'ouvrage devrait être rester compatibles avec sa structure souple. Leur estimation en G2PRO et/ou G3 sera si possible basée sur des données à l'emplacement du futur ouvrage.

e) Sujétions d'exécution et dispositions constructives

D'une manière générale, les enrochements devront répondre aux spécifications des normes PR NF EN 13383-1 et 2.

La densité de pose devra être maximale, les blocs soigneusement triés avant la pose. La pose des blocs sera réalisée à l'unité.

Les blocs seront constitués de pierres non gélives et de bonne qualité apparente (sans zone friable ou altérée), nettoyés de toute gangue ou matière susceptible de s'altérer à l'air ou à l'eau. Les enrochements seront de forme régulière, voisine du tétraèdre.

La mise en œuvre des enrochements se fera à l'aide de pelles hydrauliques, en commençant par la partie la plus basse en remontant vers le haut.

La mise en œuvre des blocs par déversement à partir de la crête des talus ou par poussage aux engins est interdite.

La pose devra s'effectuer de façon à ce que les massifs possèdent la plus grande stabilité possible, aucun bloc ne devra être en équilibre ou présenter un hors profil théorique trop important.

Dans tous les cas, le hors profil ne devra pas dépasser la moitié de l'épaisseur des blocs mis en place.

L'Entrepreneur veillera à ce que le pourcentage de vide entre les enrochements ne dépasse 30% du volume.

Les surfaces de pose des enrochements seront convenablement réglées et expurgées des matériaux en saillie qui pourraient nuire à la mise en place des enrochements.

Les remblais arrière seront constitués par les mêmes matériaux que les remblais renforcés (D3-matériaux drainants). Ils seront mis en œuvre à l'arrière des enrochements, après la pose d'un géotextile anticontaminant et d'un drain en pied de fouille.

De plus, le drainage des plates-formes arrière devront permettre d'éviter l'infiltration des eaux pluviales et de ruissellement derrière les ouvrages, par la mise en œuvre de cunettes reliées à une évacuation adaptée par exemple.

6.3.3.2. Remblais renforcés

- a) Hypothèses de calcul
- Coupe étudiée : profil transversal OA7 n°5 (hauteurs de remblai et talus définitif maximales soit respectivement 12,5 et 17,0 m) avec un soutènement en enrochement de 4 m de hauteur
- Modèle géotechnique : cf. §6.3.3.1
- Surcharges routières : 20 kN/m² (voirie projet)
- Caractéristiques des renforcements : (id. OA1 §6.3.1)
 - Bandes géosynthétiques PET (modélisation : largeur 1 m tous les 1 m)
 ρ_{flu} = 1/3
 - TR min = 25 kN (en prenant en compte yM; t = 1,25)
- Caractéristiques remblais projet : (id. OA1 §6.3.1)
 - $\mu_0 = 1.3$ (Cu = 42 à 71 soit > 2)
 - $\mu_1 = 0.9$ *tan• ' = 0.654
 - Sols D3 concassés : conditions de mises en œuvre sévères ρ_{end} = 0,67
 - PH estimé entre 4 et 9 classe de durée d'utilisation : 4 (50 ans) ρ_{deg} = 0,83
- Règles de construction parasismiques non prises en compte conformément au choix du MOA (à valider par la MOE)
- Parement prévu avec le procédé Terramesh vert (non pris en compte dans les justifications)
- Hydrogéologie : absence de nappe pérenne (le parement devra permettre le drainage du massif) ; <u>l'étude</u>
 hydraulique pourra par ailleurs induire une justification à la décrue
- Facteur partiel de modèle : γR ;d = 1,1 (Phase durable ouvrage non sensible à confirmer en fonction de la position des futurs bâtiments)

b) Principe de justification

Les justifications de cet ouvrage devront respecter la norme NF P 94-270 :

- Stabilité externe locale ELU fondamental en Approche de calcul 2 :
 - Poinconnement
 - Tassements
 - Glissement
- Stabilité externe générale ELU fondamental en Approche de calcul 3 (Talren)
- Stabilité interne ELU fondamental en Approche de calcul 2 :
 - Résistance structurelle des renforcements
 - Résistance d'interaction sol-renforcement
- Stabilité mixte ELU fondamental en Approche de calcul 3 (Talren)

c) Résultats

La note de calculs de justification de la stabilité externe locale ainsi que l'ensemble des calculs de stabilité, réalisés à partir du logiciel Talren, développé par la société Terrasol, sont reporté en annexe 10 du présent rapport. Les justifications relatives à la résistance interne seront réalisées dans les missions géotechniques ultérieures.

Les nappes de géotextile, avec TR min = 25 kN (valeur incluant les différents coefficients de réduction ρ ainsi que le facteur partiel y_{M.t} = 1,25), présenteront les longueurs (dans le sens transversal) et espacements suivants :

	Longue	eur (m)	Espacement vertical (m)
	Bande 1		
	Bande 2	5	
Nappes géosynthétiques PET	Bande 3		
avec : Largeur = 1 m	Bande 4		
Espacement horizontal = 1 m	Bande 5		1,5
TRmin = 25 kN	Bande 6		
	Bande 7	6	
	Bande 8	J	
	Bande 9		

Nota: Numérotation des bandes de bas en haut

Il est notable que les tassements évalués au sein de l'horizon n°1 sont évalués entre 4 et 7 cm. Si ces valeurs paraissent trop importantes pour les MOA et MOE, une purge de celui-ci devra être envisagée.

d) Sujétions d'exécution

Les remblais seront mis en œuvre sur une surface plane, préalablement préparée.

L'assise des remblais pourra être constituée par l'horizon n°1 ou par l'horizon n°2.

Les matériaux prévus d'être mis en œuvre étant de classe D3 (GTR2000), ils pourront être mis en œuvre avec une épaisseur correspondant à l'espacement vertical des bandes géosynthétiques.

La réalisation de risbermes successives, plutôt que d'un seul talus d'une hauteur aussi importante, serait préférable, notamment pour l'entretien.

Observations majeures

On s'assurera que la stabilité des ouvrages et des sols avoisinants le projet est assurée pendant et après la réalisation de ce dernier.

MOE devra valider le principe de non justification parasismique des ouvrages autres que les soutènement OA5 des PTF1 à 3, comme envisagé par la MOA et son AMO.

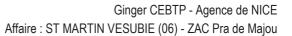
Par ailleurs, une étude hydraulique est recommandée afin de définir le régime du Vallon du Touron pour prise en compte dans les études géotechniques complémentaires.

Les conclusions du présent rapport ne sont valables que sous réserve des conditions générales des missions géotechniques de l'Union Syndicale Géotechnique fournies en annexe 1 (norme NF P94-500 de novembre 2013).

Missions ultérieures

Nous rappelons que cette étude a été menée dans le cadre d'une étude de conception G2 phase avant-projet (G2 AVP).

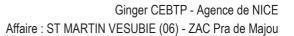
Conformément à la norme NF P94-500 de novembre 2013, il est nécessaire d'enchainer avec les phases suivantes :


- Etude géotechnique de conception phase projet (G2 PRO)
- Etude géotechnique de conception phase DCE/ACT (G2 DCE / ACT)
- Puis, au stade exécution les études géotechniques de réalisation G3 et G4.

Ces études devront intégrer :

- des investigations complémentaires afin de mieux définir :
 - le modèle géotechnique sur l'ensemble du projet (notamment dans le fond du vallon ou en pied du futur talus de l'OA7, côté sud-ouest);
 - la corrosivité des sols au droit du projet ;
- l'étude de la stabilité générale du versant au droit de l'OA7 côté sud-ouest du projet;
- si disponibles, les données relatives aux projets de bâtiments;
- l'étude hydraulique relative au vallon du Touron.

Ginger CEBTP peut prendre en charge la réalisation des missions géotechniques à suivre, de conception et de réalisation.


De plus, Ginger CEBTP peut également assurer la maîtrise d'œuvre des ouvrages géotechniques.

• Classification des missions types d'ingénierie géotechnique,

• Schéma d'enchainement des missions types d'ingénierie géotechnique.

Afnor, Normes en ligne pour: GINGER CEBTP le 20/11/2013 à 10:53

NF P94-500:2013-11

-15-

NF P 94-500

4.2.4 Tableaux synthétiques

Tableau 1 - Enchaînement des missions d'ingénierie géotechnique

Enchaînement des missions G1 à G4	Phases de la maîtrise d'œuvre	géotechnique (GN) et Phase de la mission		Objectifs à atteindre pour les ouvrages géotechniques	Niveau de management des risques géotechniques attendu	Prestations d'investigations géolechniques à réaliser
Étape 1 : Étude géotechnique préalable (G1)		Étude géolechnique préalable (G1) Phase Étude de Site (ES)			Première identification des risques présentés par le site	Fonction des données existantes et de la complexité géotechnique
	Étude préliminaire, esquisse, APS Étude géotechnique préalable (G1) phase Principes Généraux de Construction (PGC)			Première adaptation des futurs ouvrages aux spécificités du site	des futurs ouvrages identification aux spécificités des risques	
Étape 2 : Étude géotechnique de conception (G2)	APD/AVP	Étude géotechniq: (G2) Phase Avant-proje	377	Definition et comparaison des solutions envisageables pour le projet	Mésures préventives pour la réduction des risques identifiés, mésures	Fonction du site et de la complexité du projet (choix constructifs)
	PRO	Étude géotechniqu (G2) Phase Projet (PRC	200	Conception et justifications du projet	correctives pour les risques résiduels avec défection au plus tôt de leur	Fonction du site et de la complexité du projet (choix constructifs)
	DCE/ACT	Étude géotechniqu (G2) Phase DCE / ACT		Consultation sur le projet de base / Cholx de l'entreprise et mise au point du contrat de travaux	survenance	
Étape 3 : Études géolechniques	1.	À la charge de l'entreprise	À la charge du maître d'ouvrage			
de réalisation (G3/G4)	EXE/VISA	Étude et sulvi géotechniques d'exécution (G3) Phase Étude Interaction avec la phase Sulvi)	Supervision géotechnique d'exécution (G4) Phase Supervision de l'étude géotechnique d'exécution (en interaction avec la phase Supervision du sulvi)	Étude d'exécution conforme aux exigences du projet, avec mathrise de la qualité, du délai et du coût	identification des risques résidueis, mesures correctives, contrôle du management des risques résidueis (réalité des actions, vigitance, mémorisation, capitalisation des retours d'expérience)	Fonction des méthodes de construction e des adaptations proposées si des risques identifiés surviennent
	DET/AOR	Étude et sulvi géofechniques d'exécution (G3) Phase Sulvi (en interaction avec la phase Étude)	Supervision géotechnique d'exécution (G4) Phase Supervision du sulvi géotechnique d'exécution (en interaction avec la phase Supervision de l'étude)	Exécution des travaux en toute sécurité et en contormité avec les attentes du maître d'ouvrage	- coperative)	Fonction du contexte géatechnique observé et du comportement de Touvrage et des avoisinants en cours de travaux
À toute étape d'un projet ou sur un ouvrage existant	Diagnostic	Diagnostic géotechnique (G5)		Influence d'un élément géotechnique spécifique sur le projet ou sur l'ouvrage existant	Influence de cet élément géolec'infique sur les risques géolec'hniques identifiés	Fonction de l'élément géotechnique étudié

Afhor, Normes en ligne pour: GINGER CEBTP le 20/11/2013 à 10:53

NF P94-500:2013-11

NF P 94-500

-16-

Tableau 2 — Classification des missions d'ingénierie géotechnique

L'enchaînement des missions d'ingénierie géotechnique (étapes 1 à 3) doit sulvre les étapes de conception et de réalisation de tout projet pour contribuer à la maîtrise des risques géotechniques. Le maître d'ouvrage ou son mandataire doit faire réaliser successivement chacune de ces missions par une ingénierie géotechnique. Chaque mission s'appule sur des données géotechniques adaptées issues d'investigations géotechniques appropriées.

ÉTAPE 1 : ÉTUDE GÉOTECHNIQUE PRÉALABLE (G1)

Cette mission exclut toute approche des quantités, délais et coûts d'exécution des ouvrages géotechniques qui entre dans le cadre de la mission d'étude géotechnique de conception (étape 2). Elle est à la charge du maître d'ouvrage ou son mandataire. Elle comprend deux phases :

Phase Étude de Site (ES)

Elle est réalisée en amont d'une étude préliminaire, d'esquisse ou d'APS pour une première identification des risques géolechniques d'un site.

- Faire une enquête documentaire sur le cadre géotechnique du site et l'existence d'avoisinants avec visite du site et des aientours.
- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport domant pour le site étudié un modèle géologique préliminaire, les principales caractéristiques géolechniques et une première identification des risques géolechniques majeurs.

Phase Principes Généraux de Construction (PGC)

Elle est réalisée au stade d'une étude préliminaire, d'esquisse ou d'APS pour réduire les conséquences des risques géotechniques majeurs identifiés. Elle s'appuie obligatoirement sur des données géotechniques adaptées.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport de synthèse des données géotechniques à ce stade d'étude (première approche de la ZIG, horizons porteurs potentiels, ainsi que certains principes généraux de construction envisageables (notamment fondations, terrassements, ouvrages enterrés, améliorations de sois).

ÉTAPE 2 : ÉTUDE GÉOTECHNIQUE DE CONCEPTION (G2)

Cette mission permet l'élaboration du projet des ouvrages géotechniques et réduit les conséquences des risques géotechniques importants identifiés. Elle est à la charge du maître d'œuvrage ou son mandataire et est réalisée en collaboration avec la maîtrise d'œuvre ou întégrée à cette demière. Elle comprend trois phases :

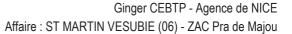
Phase Avant-projet (AVP)

Elle est réalisée au stade de l'avant-projet de la maîtrise d'œuvre et s'appuie obligatoirement sur des données géotechniques adaptées.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport donnant les hypothèses géotechniques à prendre en compte au stade de l'avant-projet, les principes de construction envisageables (terrassements, souténements, pentes et talus, fondations, assises des dallages et voiries, améliorations de sois, dispositions générales vis-à-vis des nappes et des avoisinants), une ébauche dimensionnelle per type d'ouvrage géotechnique et la pertinence d'application de la méthode observationnelle pour une meilleure maîtrise des risques géotechniques.

Phase Projet (PRO)

Elle est réalisée au stade du projet de la maîtrise d'œuvre et s'appule obligatoirement sur des données géotechniques adaptées suffisamment représentatives pour le site.


- Définir si besoin un programme d'investigations géotéchniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Foumir un dossier de synthèse des hypothèses géotechniques à prendre en compte au stade du projet (valeurs caractéristiques des paramètres géotechniques en particulier), des notes techniques donnant les choîx constructifs des ouvrages géotechniques (terrassements, souténements, pentes et taius, fondations, assises des dallages et voiries, améliorations de sols, dispositions vis-à-vis des nappes et des avoisinants), des notes de calcul de dimensionnement, un avis sur les valeurs seulis et une approché des quantités.

Phase DCE / ACT

Elle est réalisée pour finaliser le Dossier de Consultation des Entreprises et assister le maître d'ouvrage pour l'établissement des Contrats de Travaux avec le ou les entrepreneurs retenus pour les ouvrages géotechniques.

- Étabilir ou participer à la rédaction des documents techniques nécessaires et suffisants à la consultation des entreprises pour leurs études de réalisation des ouvrages géotechniques (dossier de la phase Projet avec plans, notices techniques, cahier des charges particulières, cadre de bordereau des prix et d'estimatif, planning prévisionnel).
- Assister éventuellement le maître d'ouvrage pour la sélection des entreprises, analyser les offres techniques, participer à la finalisation des pièces techniques des contrats de travaux.

Dossier: CNI2.L.850.0009

Afhor, Normes en ligne pour: GINGER CEBTP le 20/11/2013 à 10:53

NF P94-500:2013-11

-17-

NF P 94-500

Tableau 2 — Classification des missions d'ingénierie géotechnique (suite)

ÉTAPE 3 : ÉTUDES GÉOTECHNIQUES DE RÉALISATION (G3 et G 4, distinctes et simultanées)

ÉTUDE ET SUIVI GÉOTECHNIQUES D'EXECUTION (G3)

Cette mission permet de réduire les risques géotechniques résiduels par la mise en œuvre à temps de mesures correctives d'adaptation ou d'optimisation. Elle est conflée à l'entrepreneur sauf disposition contractuelle contraire, sur la base de la phase G2 DCE/ACT. Elle comprend deux phases interactives :

Phase Étude

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivil technique, en exploiter les résultats.
- Étudier dans le détail les ouvrages géotechniques : notamment établissement d'une note d'hypothèses géotechniques sur la base des données fournies par le contrat de travaux ainsi que des résultats des éventuelles investigations complémentaires, définition et dimensionnement (calculs justificatits) des ouvrages géotechniques, méthodes et conditions d'exécution (phasages généraux, sulvis, auscultations et contrôles à prévoir, valeurs seuls, dispositions constructives complémentaires éventuelles).
- Élaborer le dossier géotechnique d'exécution des ouvrages géotechniques provisoires et définitifs: plans d'exécution, de phasage et de sutvi.

Phase Sulvi

- Sulvre en continu les auscultations et l'exécution des ouvrages géolechniques, appliquer si nécessaire des dispositions constructives prédéfinles en phase Étude.
- Vérifier les données géotechniques par relevés lors des travaux et par un programme d'investigations géotechniques complémentaire si nécessaire (le réaliser ou en assurer le suivi technique, en exploiter les résultats).
- Établir la prestation géotechnique du dossier des ouvrages exécutés (DOE) et foumir les documents nécessaires à l'établissement du dossier d'interventions utiérieures sur l'ouvrage (DIUO)

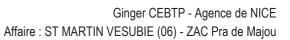
SUPERVISION GÉOTECHNIQUE D'EXECUTION (G4)

Cette mission permet de vérifler la conformité des hypothèses géotechniques prises en compte dans la mission d'étude et suivi géotechniques d'exécution. Elle est à la charge du maître d'ouvrage ou son mandataire et est réalisée en collaboration avec la maîtrise d'œuvre ou intégrée à cette demière. Elle comprend deux phases interactives :

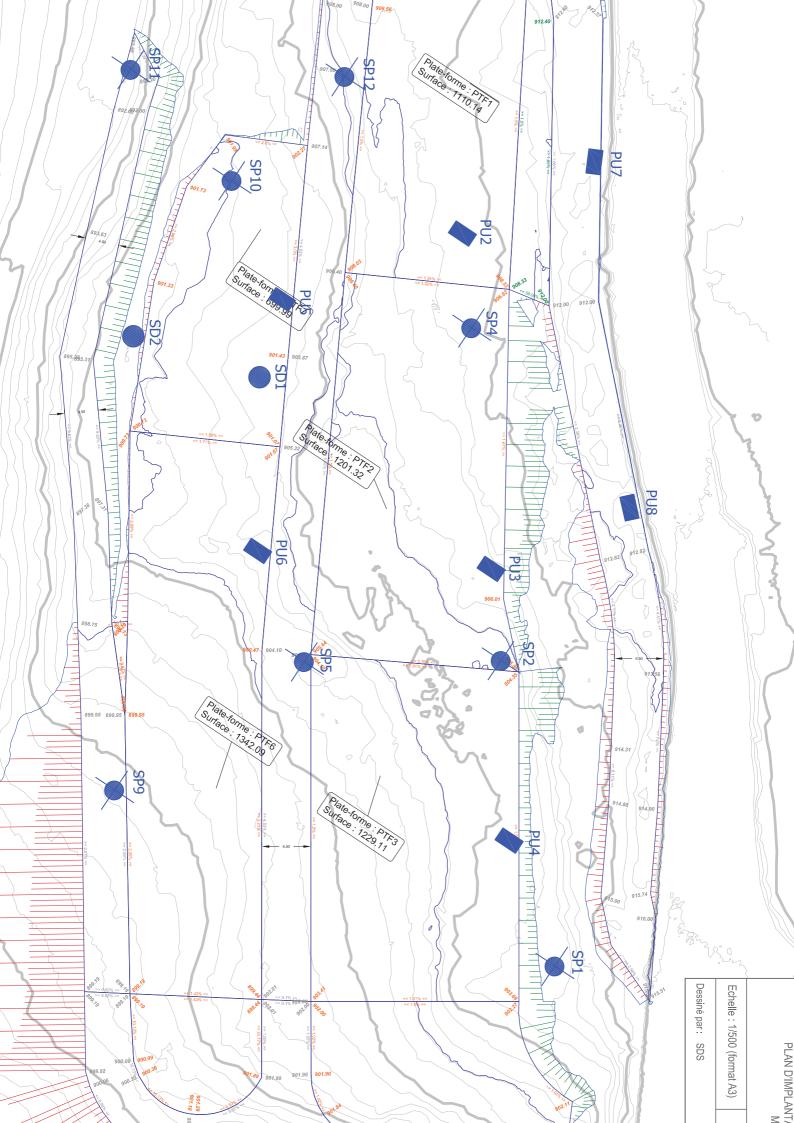
Phase Supervision de l'étude d'exécution

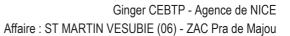
 Donner un avis sur la pertinence des hypothèses géotechniques de l'étude géotechnique d'exécution, des dimensionnements et méthodes d'exécution, des adaptations ou optimisations des ouvrages géotechniques proposées par l'entrepreneur, du plan de contrôle, du programme d'auscuttation et des valeurs seulls.

Phase Supervision du suivi d'exécution

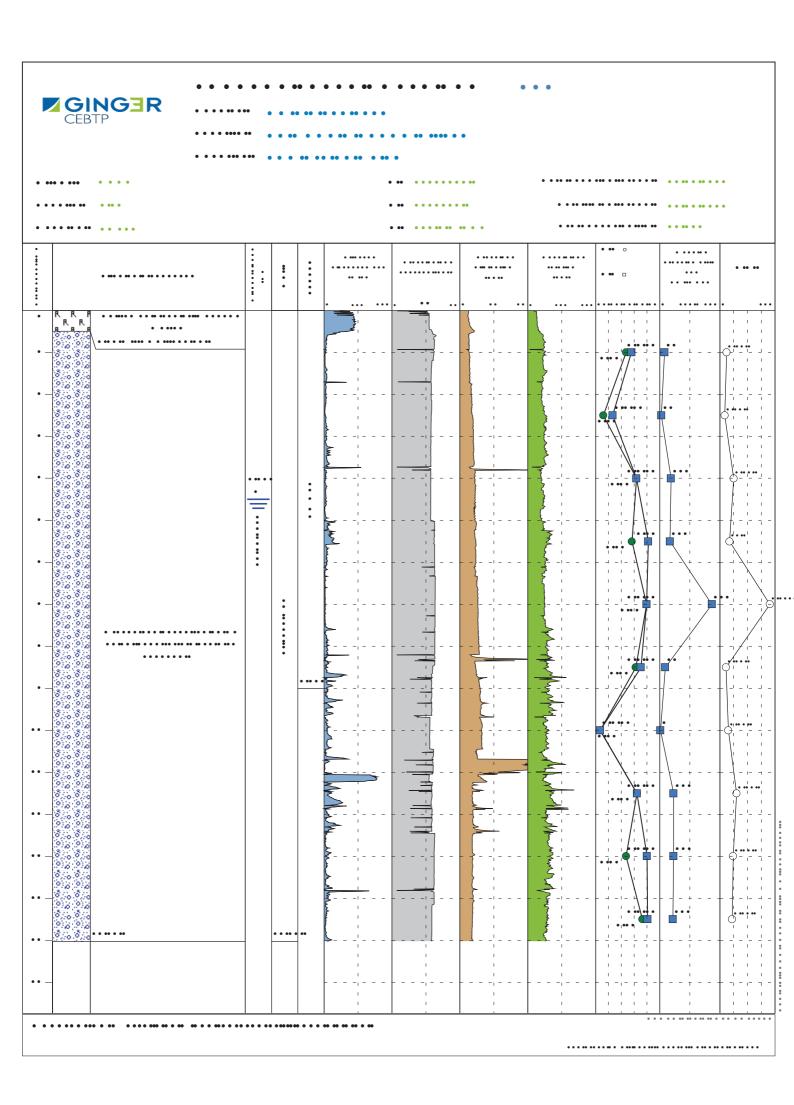

- Par interventions ponctuelles sur le chantier, donner un avis sur la pertinence du contexte géolectrique tel qu'observé par l'entrepreneur (G3), du comportement tel qu'observé par l'entrepreneur de l'ouvrage et des avoisinants concernés (G3), de l'adaptation ou de l'optimisation de l'ouvrage géolechnique proposée par l'entrepreneur (G3).
- donner un avis sur la prestation géolechnique du DOE et sur les documents fournis pour le DIUO.

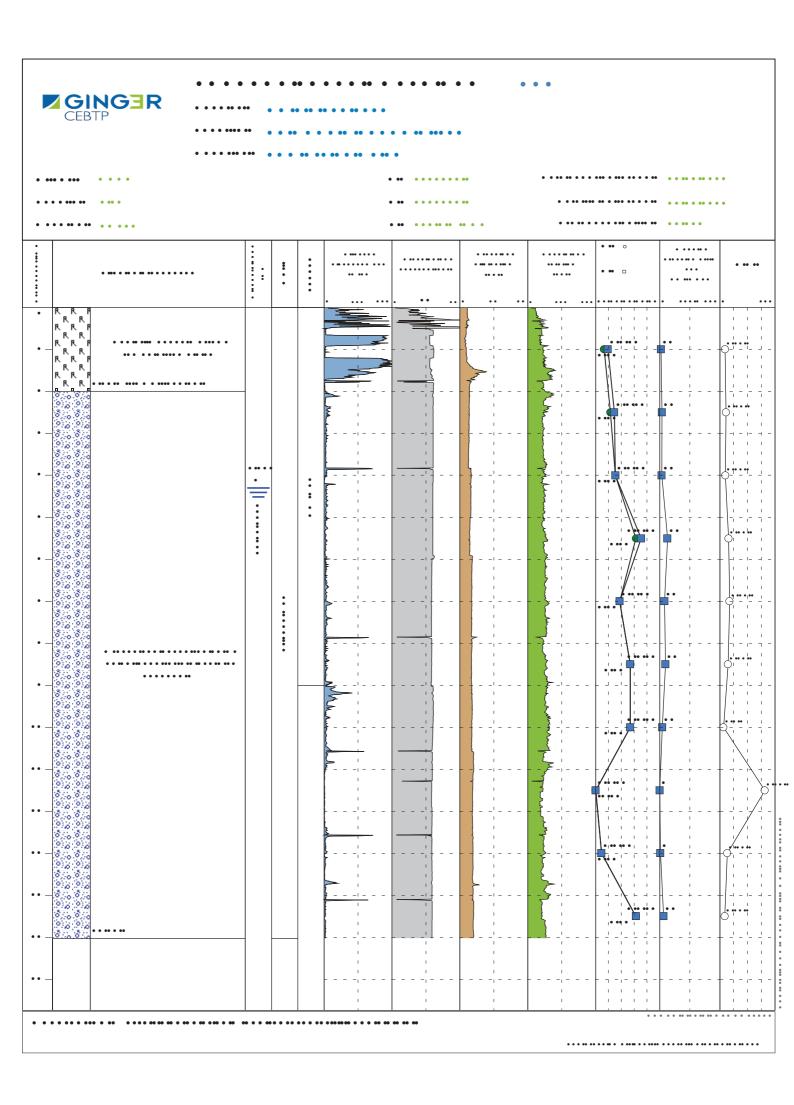
DIAGNOSTIC GÉOTECHNIQUE (G5)


Pendant le déroulement d'un projet ou au cours de le vie d'un ouvrage, il peut être nécessaire de procéder, de façon strictement limitative, à l'étude d'un ou plusieurs éléments géotechniques spécifiques, dans le cadre d'une mission ponctuelle. Ce diagnostic géotechniques précise l'influence de cet ou ces éléments géotechniques sur les risques géotechniques identifiés ainsi que leurs conséquences possibles pour le projet ou l'ouvrage existant.


- Définir, après enquête documentaire, un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Étudier un ou plusieurs éléments géotechniques spécifiques (par exemple soutènement, causes géotechniques d'un désordre) dans le cadre de ce diagnostic, mais sans aucune implication dans la globalité du projet ou dans l'étude de l'état général de l'ouvrage existant.
- Si ce diagnostic conduit à modifier une partie du projet ou à réaliser des travaux sur l'ouvrage existant, des études géotechniques de conception étiou d'exécution ainsi qu'un suivi et une supervision géotechniques seront réalisés ultérieurement, conformément à l'enchaînement des missions d'ingénierie géotechnique (étape 2 et/ou 3).

Dossier: CNI2.L.850.0009

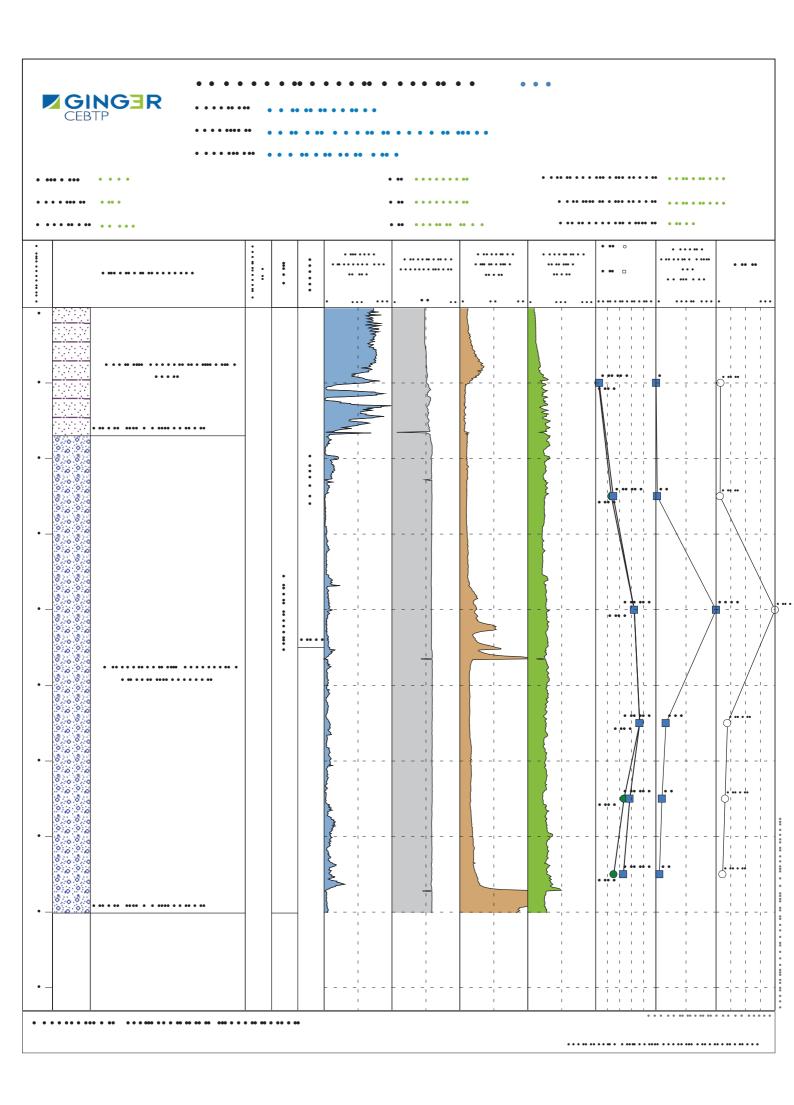


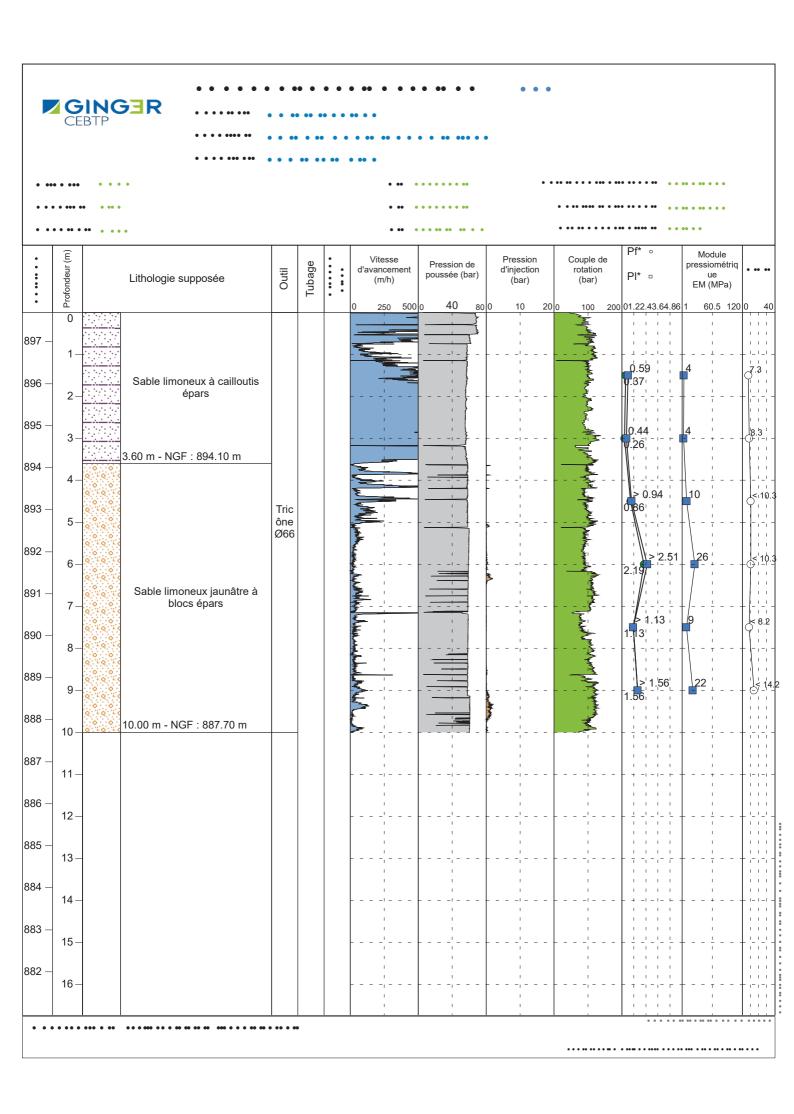


- Coupes des sondages destructifs,
- Courbes pressiométriques (PI* et E_M),
- Diagrammes des enregistrements de paramètres.

	• • • •		•	• • • • •	• • • • •		• •								
Z GING∃R CEBTP	• • • • • • • • • • • • • • • • • • • •		•• •	• • • • • •											
CERIA	• • • • • • • • • • • • • • • • • • • •	• • ••	• •	• • • • •	• • • • • •	•									
	• • • • • • • • • • • • • • • • • • • •	• • • •	•• ••	• • • • • •	•										
• ••• • ••															
• • • • • • • • •					• • • • • • • • •	••	• • • • • • • • • • • • • • • • • • • •	• •• • • • • • •	• • • • • • • •	• •					
• • • • • • • • • • • • • • • • • • • •					• • • • • • • •	•• • •	• • • • •	• • • • • • • • • • •	• • • • •						
•	•							• • • •							
• ••• • • • • • • • • • • • • • • • • •		: :			• • • • • • • • • • • • • • • • • • • •		** ** ***	• •• □	• • • • • • • • • • • • • • • • • • • •	• •• ••					
R R R R R R R R R R R R R R R R R R R				Maria											
				1 1	1	1		1 1 1 1	1	1 1 1					
• • • • • • • • • • • • • • • • • • •		••••					<u> </u>	• •							
							••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •					

Dossier: CNI2L.850.0009

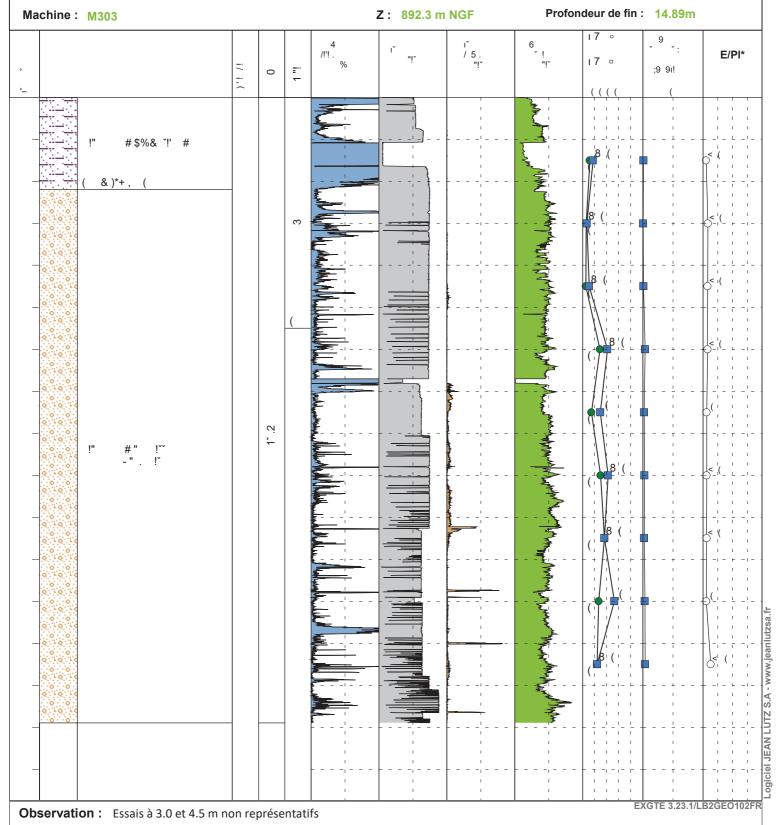

Localité : ST MARTIN VESUBIE Chantier : ZAC Pra de Majou

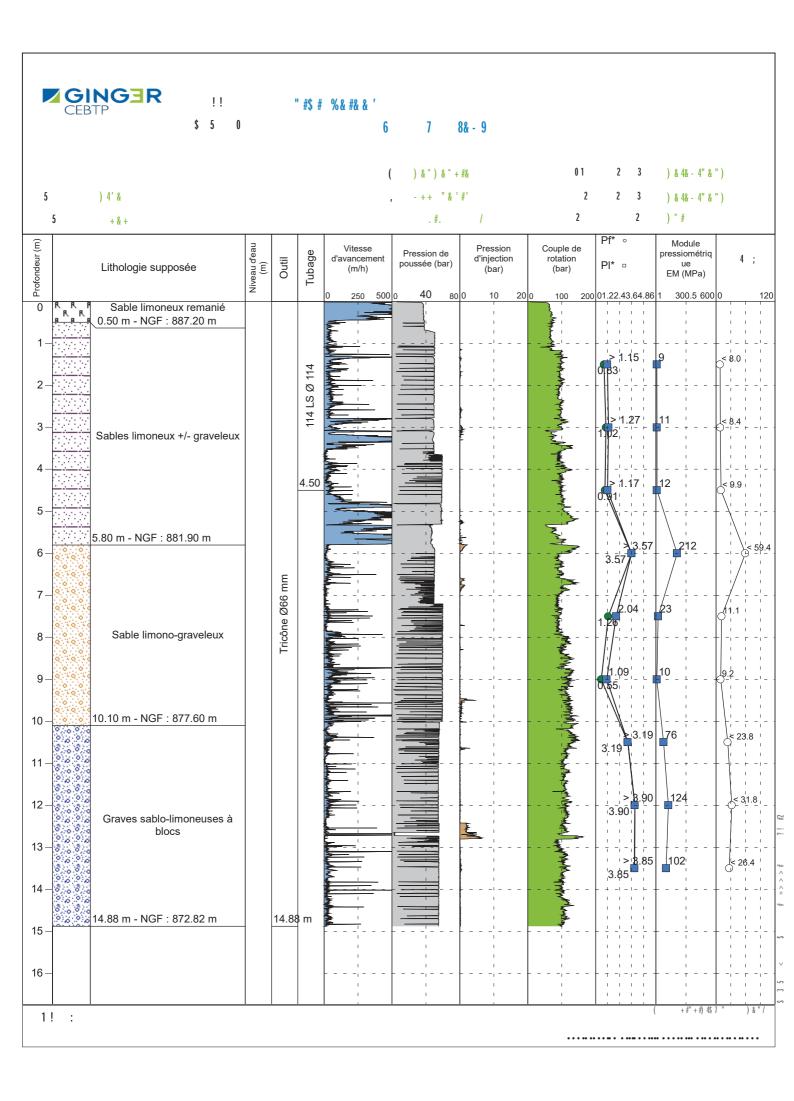

Client: MNCA 06 X: 1041019.7 Date début de forage: 29/04/2021

Echelle: 1/90 Y: 6338325.9 Date fin de forage: 29/04/2021

Machine: LM005 Z: 909.1 m NGF Profondeur de fin: 11.01m

Ma	chine: LM005					Z: 909.1 m	NGF	Profondeur de fin: 11.01m				
Profondeur (m)	Lithologie supposée	Niveau d'eau (m)	Outil	Tubage	Vitesse d'avancement (m/h)	Pression de poussée (bar)	Pression d'injection (bar)	Couple de rotation (bar)	Module pressiométriq ue EM (MPa)			
<u>0</u>	RRF	Z			0 250 50	0 0 40 80	0 10 20	0 100 200 01.22.43.64	86 1 300.5 600 0	120		
1-	Sable limoneux marron (remblais?)				Now Market							
2-				06	-			4.86	36 105 21	.6		
_				06Ø MN		1	1	1 1 1 1		1 1 1		
3-	Graves sableuses (beiges) à blocs +/- abondants							4.37	86 1103' \& 21'	'.2		
4 –	8 6 8 6 8 6 8 8 6 8 8 6 8								79 30 . 6.3			
5-	NGF : 904.10 m		Tricone Ø63					4.31		 -		
6-			Tricon					3.86	34 104	.4		
7 –									80 41 < 8.6 ·	; -		
8-	Graves sableuses (beiges à grises) à blocs +/- abondants							3.32		 - - -		
9 –								6.	49 46 7.1	 - - -		
10 —						1 1			/			
11 –	8 8 8 8 8 8			_				3.79	76 42 < 8.8	 - 		
12-					 - 	1	 			 		
13 –					1 1 1	1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
						1	 	1 1 1	1 1 1	 		
14 –						1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
15 –										_ <u> </u>		
16 –						1	 			 - - 		
	servation: ·············				<u> </u>	<u> </u>	<u> </u>	l	EXGTE 3.23.1/LB2GEO	104FI		


Dossier: CNI2.L.850.009

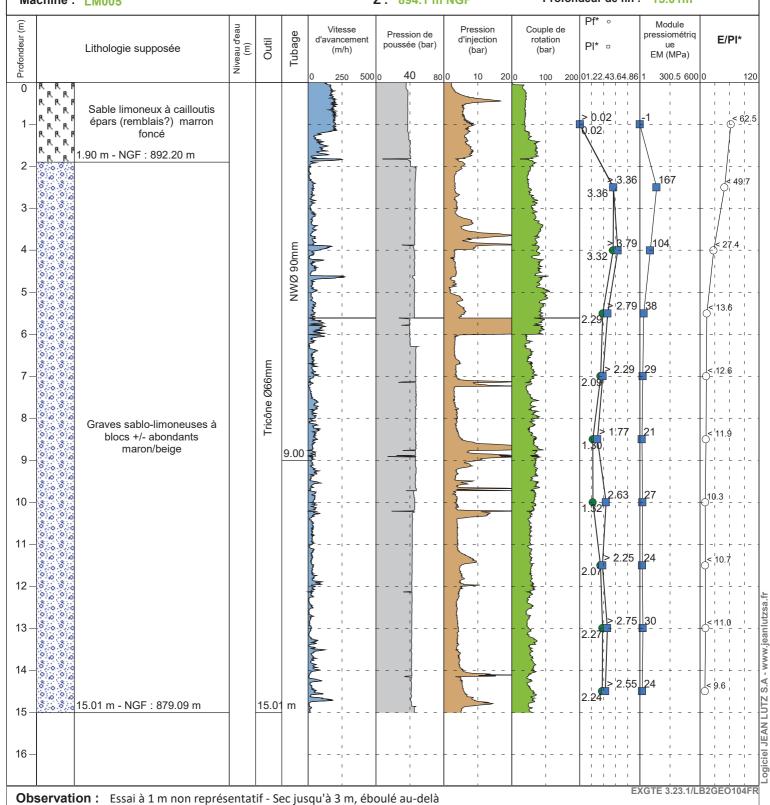

Localité: SAINT MARTIN VESUBIE (06)

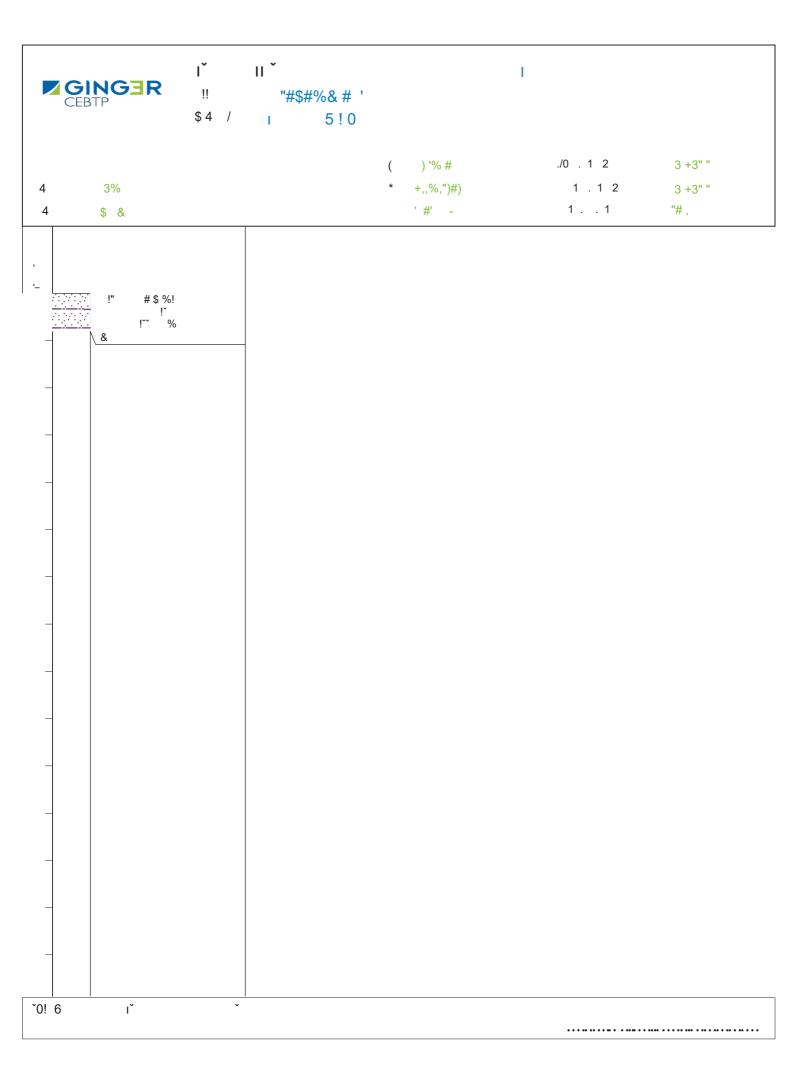
Chantier: ZAC de Pra majou

Client: MNCA X: 1041065.069 Date début de forage: 09/06/2021

Echelle: 1/90 Y: 6338222.649 Date fin de forage: 09/06/2021

Dossier: CNI2.L.850.0009


Localité: SAINT MARTIN VESUBIE (06)

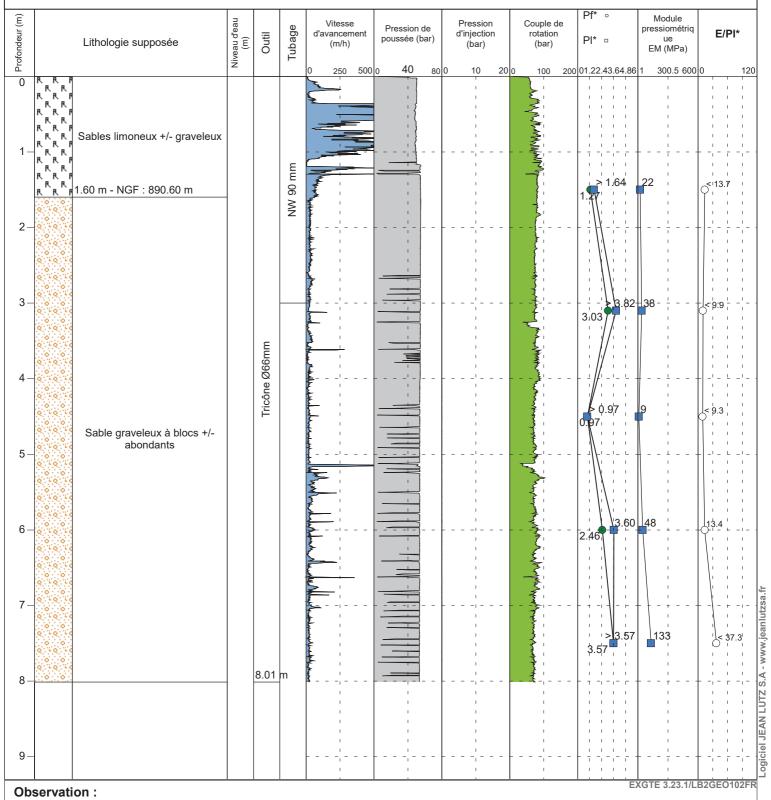

Chantier: ZAC Pra de Majou

Client : MNCA X : 1041012.7 Date début de forage : 09/06/2021

Echelle: 1/90 Y: 6338248.7 Date fin de forage: 09/06/2021

Machine: LM005 Z: 894.1 m NGF Profondeur de fin: 15.01m

Dossier: CNI2.L.850.009


Localité: SAINT MARTIN VESUBIE (06)

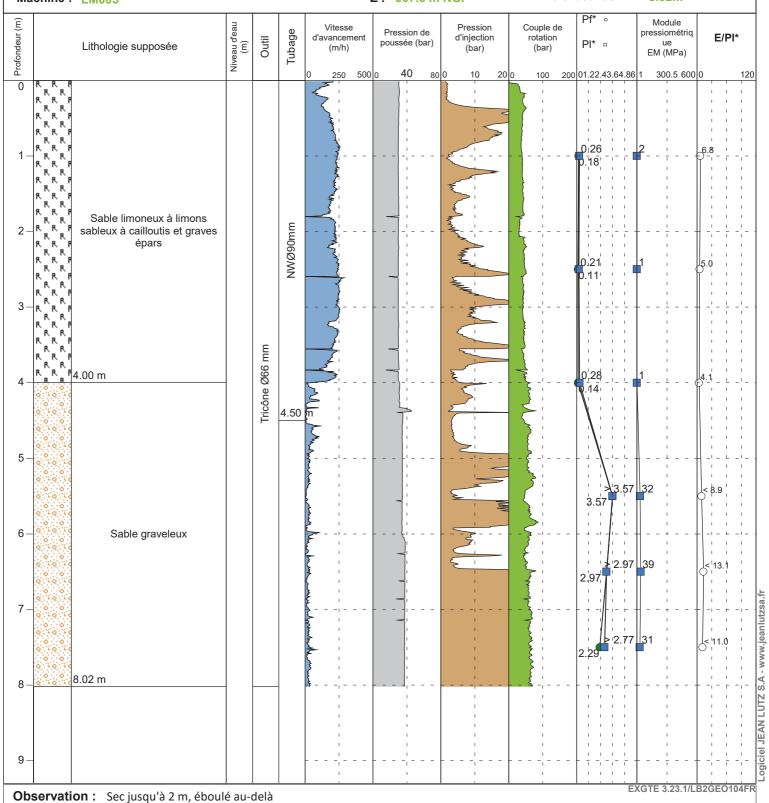
Chantier: ZAC Pra majou

Client: MNCA X: 1040963.2 Date début de forage: 14/06/2021

Echelle: 1/50 Y: 6338329.4 Date fin de forage: 14/06/2021

Machine: M303 Z: 892.2 m NGF Profondeur de fin: 8.01m

Dossier: CNI2.L.850.009


Localité: SAINT MARTIN VESUBIE (06)

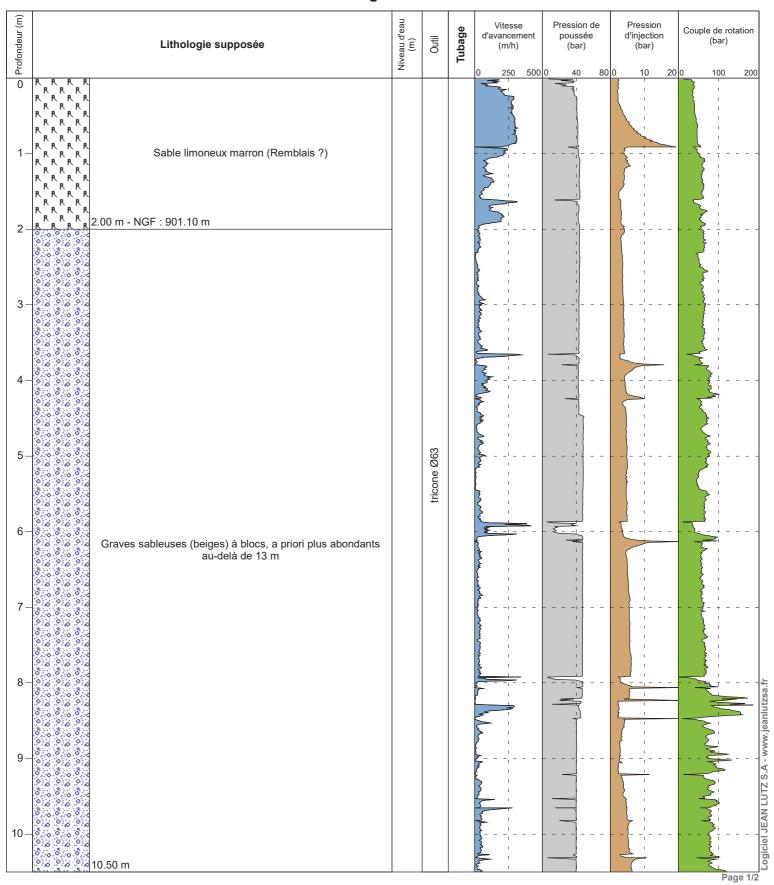
Chantier: ZAC Pra majou

Client: MNCA X: 1040987.4 Date début de forage: 14/06/2021

Echelle: 1/50 Y: 6338344.3 Date fin de forage: 14/06/2021

Machine: LM005 Z: 907.5 m NGF Profondeur de fin: 8.02m

ANNEXE 4 – SONDAGES DESTRUCTIFS


- Coupes des sondages destructifs,
- Diagrammes des enregistrements de paramètres.

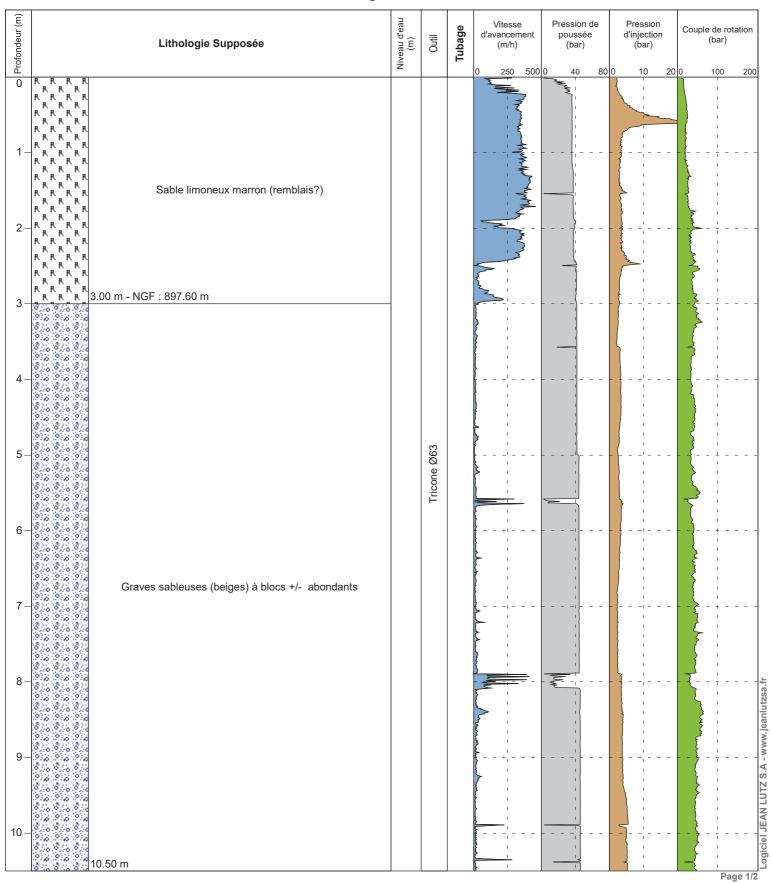
ZAC Pra de Majou ST MARTIN VESUBIE (06)

(Contrat CNI2.L.850.0009)

1/50 Forage : SD1 EXGTE 3.23.1/LB2GEO104FR

1/50 SD1

Profondeur (m)	Lithologie supposée	Niveau d'eau (m)	Outil	Tubage	Vitesse d'avancement (m/h)	Pression de poussée (bar)	Pression d'injection (bar)	Couple de rotation (bar)
11 -		Ž			0 250 500	0 40 80	0 10 20	0 100 200
14 –	Graves sableuses (beiges) à blocs, a priori plus abondants au-delà de 13 m		tricone Ø63					
16 –			#					
18 –								
	20.00 m	_	20.00) m				- www.jeanlutzsa.fr
21 –								Page 2/2


Page 2/2

ZAC Pra de Majou ST MARTIN VESUBIE (06)

(Contrat CNI2.L.850.0009)

1/50 Forage: SD2 EXGTE 3.23.1/LB2GEO104FR

1/50 SD2

Profondeur (m)	Lithologie Supposée	Niveau d'eau (m)	Outil	Tubage	Vitesse d'avancement (m/h)	Pression de poussée (bar)	Pression d'injection (bar)	Couple de rotation (bar)
11 –		Z			0 250 500	0 40 80	0 10 20	0 100 200
12-			53			1		
13 –	Graves sableuses (beiges) à blocs +/- abondants		Tricone Ø63					
14 –								
15 –	15.00 m	-	15.00) m				
16-						1 1 1 1 1 1	 	
17 –							 - - 	
18-								
19 –								utzsa.fr
20 –								Z S.A - www.jeanli
21 –								Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

Page 2/2

ANNEXE 5 - PUITS DE RECONNAISSANCE A LA PELLE MECANIQUE

- Coupes détaillée des sols,
- Photographies des puits à la pelle et des matériaux extraits.
- Géométrie des structures enterrées pour les puits de reconnaissance de fondation

PU₁

Dossier: CNI2.L.850.0009

Localité: Saint-Martin de Vésubie (06)

Chantier: ZAC Pra de Majou

Client : MNCA X : 1040990.7 Date début de forage : 03/06/2021

Echelle: 1/20 Y: 6338375.1 Date fin de forage: 03/06/2021

Machine: Pelle mécanique 2.5T Z: 915 m NGF Profondeur de fin: 3.10m

Machine :	Pelle	mécanique 2.5T	Z: 9	15 m NGF	Profondeur de fin : 3
Profondeur (m) Cote NGF Matériel	Niveau d'eau (m)		nologie	Echantillons	Images
0.5	Sec	Graves centimétrique et arrondies da	ues à décimétriques anguleuses ans une matrice limoneuse. 20 m		
3.5					

Observation: Arrêt volontaire à 3.10 m.

Log pelle mécanique - E138 - V1 du 21/07/2016

Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

EXGTE 3.23.1

Dossier: CNI2.L.850.0009

Localité : Saint-Martin de Vésubie (06)

Chantier: ZAC Pra de Majou

Client : MNCA X : 1041011.4 Date début de forage : 03/06/2021

PU₂

Echelle: 1/20 Y: 6338334.4 Date fin de forage: 03/06/2021

Machine : Pelle mécanique 2.5T Z : 908.6 m NGF Profondeur de fin : 2.25m

Profondeur (m)	Cote NGF	Matériel	Niveau d'eau (m)	Lithologie	Echantillons	Images
0	908 -	Pelle mécanique 2.5T	Sec	R R R R R R R R R R R R R R R R R R R		
3- - - - - - 3.5-	906 -			2.25 m - NGF : 906.35 m		

Observation: Refus sur blocs à 2.25 m.

Log pelle mécanique - E138 - V1 du 21/07/2016

Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

EXGTE 3.23.1

PU₃

Dossier: CNI2.L.850.0009

Localité : Saint-Martin de Vésubie (06)

Chantier: ZAC Pra de Majou

Date début de forage : 03/06/2021 Client : **MNCA** X: 1041037.5

Date fin de forage: 03/06/2021 Echelle: 1/20 Y: 6338301.4

Z: 907.1m NGF Profondeur de fin: 1,50m Machine: Pelle mécanique 2.5T

1	/lachii	ne :	Pelle	e mécar	nique 2.5T Z	: 907.1	m NGF	Profondeur de fin : 1.50m	
Profondeur (m)		Matériel	Niveau d'eau (m)		Lithologie	Echantillons		Images	
0.5	-907 - - -	2.5T			Sable limoneux brun à graves et cailloutis. Présence d'un gros réseau racinaire. 0.60 m - NGF : 906.50 m				
1	-906 - - -	Pelle mécanique 2.5T	Sec	00000000000000000000000000000000000000	0.60 m - NGF : 906.50 m Blocs dans matrice limono- argileuse à rares cailloutis. Dmax : 80cm.	5			
2	_ _ _ _								
2.5	_ _ _ _								.jeanlutzsa.fr
3.5	- 9 04 - - -	_							ogiciel JEAN LUTZ S.A - www.jeanlutzsa.f

Observation: Refus sur blocs à 1.5 m.

Log pelle mécanique - E138 - V1 du 21/07/2016

Dossier : CNI2.L.850.0009

Localité : Saint-Martin de Vésubie (06)

Chantier: ZAC Pra de Majou

Client : MNCA X : 1041060.3 Date début de forage : 03/06/2021

PU4

Echelle: 1/20 Y: 6338272.6 Date fin de forage: 03/06/2021

Machine: Pelle mécanique 2.5T Z: 905.2 m NGF Profondeur de fin: 3.00m

Ma	achin	ie :	Pelle	mecanique 2.51 Z: 9	05.2	m r
Profondeur (m)	Cote NGF	Matériel	Niveau d'eau (m)	Lithologie	Echantillons	
	905 —	Pelle mécanique 2.5T	0	Sable limoneux marron à cailloutis et rares blocs. Gros réseau racinaire. 1.10 m - NGF : 904.10 m		
1.5 —	9 03 —		Sec	Limon sableux orange brun à blocs en abondance. Passage peu argileux à rares cailloutis en fond de fouille.	llons	
3	9 02 —			3.00 m - NGF : 902.20 m	Echantill	

Images

Observation: Arrêt volontaire à 3.0 m.

EXGTE 3.23.1

Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

PU₅

Dossier: CNI2.L.850.0009

Localité : Saint-Martin de Vésubie (06)

Chantier: ZAC Pra de Majou

Date début de forage : 03/06/2021 Client: **MNCA** X: 1040996.5

Y: 6338315.4 Echelle: 1/20 Date fin de forage: 03/06/2021

Profondeur de fin: 1.80m Machine: Pelle mécanique 2.5T Z: 903.2 m NGF

M	Machine :		Pelle mécanique 2.5T			903.2	m NGF Profondeur de fin: 1.80m
Profondeur (m)	Cote NGF	Matériel	Niveau d'eau (m)		Lithologie	Echantillons	Images
0 1 1	903 —	Pelle mécanique 2.5T	Sec		0.30 m - NGF : 902.90 m		
-	902 —	Pelle m			Sable légèrement limoneux orangé à rares graves et blocs. Dmax : 20cm 1.80 m - NGF : 901.40 m	Echantillons	
2 2.5 	901 —						71. SB./fr
3 3.5	900 —						THE SA - www.jeanlutzsa.fr

Observation: Refus sur blocs à 1.80 m.

Log pelle mécanique - E138 - V1 du 21/07/2016

PU₆

Dossier: CNI2.L.850.0009

Localité: Saint-Martin de Vésubie (06)

Chantier: ZAC Pra de Majou

Client: MNCA X: 1041006.7 Date début de forage: 03/06/2021

Echelle: 1/20 Y: 6338283.4 Date fin de forage: 03/06/2021

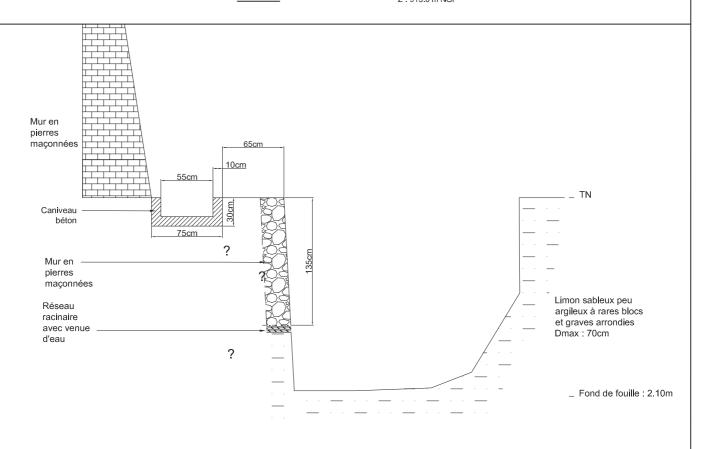
Machine : Pelle mécanique 2.5T Z : 901.9 m NGF Profondeur de fin : 2.60m

Profondeur (m)	Cote NGF	Matériel	Niveau d'eau (m)		Lithologie	Echantillons	Images
0	901 -	Pelle mécanique 2.5T	Sec	R R R R R R R R R R R R R R R R R R R	Remblais sablo-limoneux marron clair à cailloutis éparses. Présence d'un réseau racinaire et traces de matière organique. 1.30 m - NGF : 900.60 m		
1.5 - - - - 2 - - - - 2.5 -	900 —	Pelle méca	Š		Limon sableux légèrement humide brun/orangé à blocs. Quelques graves anguleuses dans le fond de la fouille. Dmax : 45cm		
3 - - 3 - - - 3.5 -	899 —						

Observation: Arrêt volontaire à 2.60 m.

Log pelle mécanique - E138 - V1 du 21/07/2016

DAY DAY FOR THE PROPERTY OF TH

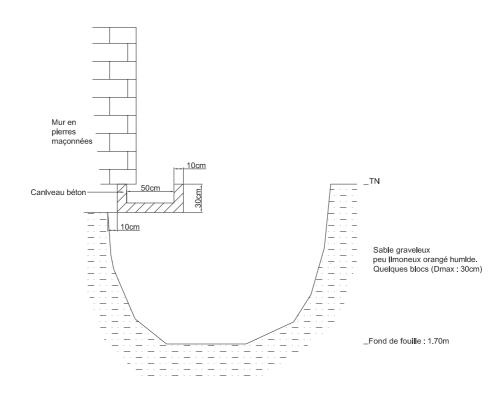

Affaire: ZAC Pra de Majou - Saint-Martin Vésubie(06)

RELEVE DES PUITS DE RECONNAISSANCE DE FONDATION

PU8 réalisé le 03/06/21

X: 1041050.3 Y: 6338318.3 Z: 913.0 m NGF

Dossier: CNI2.L.850.0009


Affaire : ZAC Pra de Majou - Saint-Martin Vésubie (06)

RELEVE DES PUITS DE RECONNAISSANCE DE FONDATION

PU7 réalisé le 03/06/21

X: 1041022.0 Y: 6338354.3 Z: 913.7m NGF

ANNEXE 6 – NOTES DE CALCULS DE STABILITE DE TALUS (DONT OA3)

- Rétroanalyse à hauteur de l'OA3
- Talus provisoires et définitifs avec une pente à 1/1
- Talus définitif de l'OA3 (profil n°3 OA2)

Dossier: CNI2.L.850.0009 Annexes

Données du projet

Numéro d'affaire : CNI2.L.850.0009

Titre du calcul : Rétroanalyse+talus projet sur P3 OA3

Lieu: SAINT MARTIN VESUBIE (06) Commentaires: ZAC de Pra Majou Système d'unités: kN, kPa, kN/m3

γw: 10.0 Couches de sol

Ī	Nom	Couleur	γ	φ	С	Δс	qs clous	рl	KsB	Anisotropie	Favorable	Coefficients de sécurité spécifiques
1	H1		19,0	38,00	2,0	0,0	-	-	-	Non	Non	Non
2	H2		20,0	40,00	0,0	0,0	-	-	-	Non	Non	Non

Couches de sol (cont.)

	Nom	Couleur	Гγ	Гс	Γtan(φ)	Type de cohésion	Courbe
1	H1		-	-	-	Effective	Linéaire
2	H2		-	-	-	Effective	Linéaire

Points

	Х	Υ		Х	Υ		Х	Υ		Х	Υ		Х	Υ		Х	Υ
1	4,420	918,802	2	0,000	918,802	4	0,000	915,500	5	5,364	916,414	6	6,130	916,332	7	8,103	915,616
12	18,500	915,500	18	40,000	908,825	19	40,000	905,500	23	25,500	910,000	28	20,000	915,500	29	23,000	912,500
30	35,344	911,788	31	40,000	911,500	32	24,000	911,500	33	40,000	910,349						

Segments

	Point 1	Point 2																		
1	2	1	3	1	5	4	5	6	5	6	7	33	4	19	34	7	12	35	12	23
36	23	18	42	12	28	44	28	29	46	29	30	47	30	31	48	23	32	49	29	32
50	32	33																		

Talren v5

Imprimé le : 24 juin 2021 13:10:12 Calcul réalisé par : GINGER CEBTP

Projet: Rétroanalyse+talus projet sur P3 OA3

Nom de la phase : Phase 1

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
1	2	1	H1	3	1	5	H1	4	5	6	H1
5	6	7	H1	33	4	19	H2	34	7	12	H1
35	12	23	H1	36	23	18	H1				

<u>Liste des éléments activés</u> **Conditions hydrauliques :** Néant

Talren v5

Imprimé le : 24 juin 2021 13:10:12 Calcul réalisé par : GINGER CEBTP

Projet: Rétroanalyse+talus projet sur P3 OA3

Nom de la phase : Phase 1

Nom de la situation : Rétroanalyse

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : Unitaire

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,000	Гс'	1,000	Гси	1,000
ΓQ	1,000	Γqsl,clou,ab	1,000	Fqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Fqsl,tirant,es	1,000	Fqsl,bande	1,000
ГрІ	1,000	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,000

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 24,000; Y= 916,270
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

Nombre de centres en X / en Y : en X= 5; en Y= 5

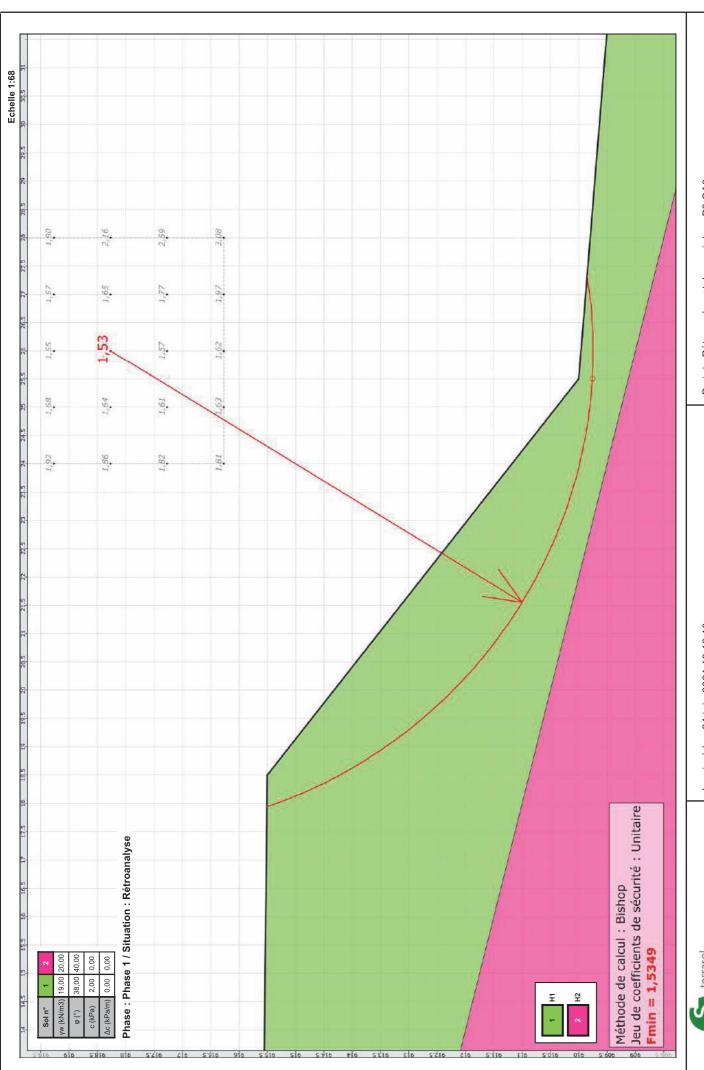
Incrément sur le rayon : 1,000

Nombre d'incréments sur le rayon : 10
Abscisse émergence limite aval : 5,706
Type de recherche : Point de passage imposé
Point de passage imposé : X= 25,500; Y= 909,757

Nombre de tranches : 100 Prise en compte du séisme : Non

Résultats

Coefficient de sécurité minimal: 1,5349


Coordonnées du centre critique et rayon du cercle critique: N°= 117; X0= 26,00; Y0= 918,27; R= 8,52

Talren v5

Imprimé le : 24 juin 2021 13:10:13 Calcul réalisé par : GINGER CEBTP

Projet : Rétroanalyse+talus projet sur P3 OA3

Projet : Rétroanalyse+talus projet sur P3 OA3

Page 4/10

S terrasol

Tairen v5 v5.2.9

Imprimé le : 24 juin 2021 13:10:13 Calcul réalisé par : GINGER CEBTP Setec
T:\@C\DOSSIERS NICE\z021\CNIZ\L.850.0009 - MNCA - G2 AVP - ZAC Pra de Majou - SAINT MARTIN VESUBIE\travail\calcuis\Talus\Retroanalyse.t5p

Nom de la phase : Talus provisoire 45°

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
1	2	1	H1	3	1	5	H1	4	5	6	H1
5	6	7	H1	33	4	19	H2	34	7	12	H1
36	23	18	H1	42	12	28	H1	44	28	29	H1
48	23	32	H1	49	29	32	H1				

<u>Liste des éléments activés</u> <u>Conditions hydrauliques</u>: Néant

Talren v5

Imprimé le : 24 juin 2021 13:10:13 Calcul réalisé par : GINGER CEBTP

Projet: Rétroanalyse+talus projet sur P3 OA3

Nom de la phase : Talus provisoire 45° Nom de la situation : Situation 1 Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : Unitaire

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гѕ1	1,000	Γ's1	1,000	Γφ	1,000	Гс'	1,000	Гси	1,000
ΓQ	1,000	Fqsl,clou,ab	1,000	Γqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,000
ГрІ	1,000	Га,clou	1,000	Га,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,000

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 24,847; Y= 915,372
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

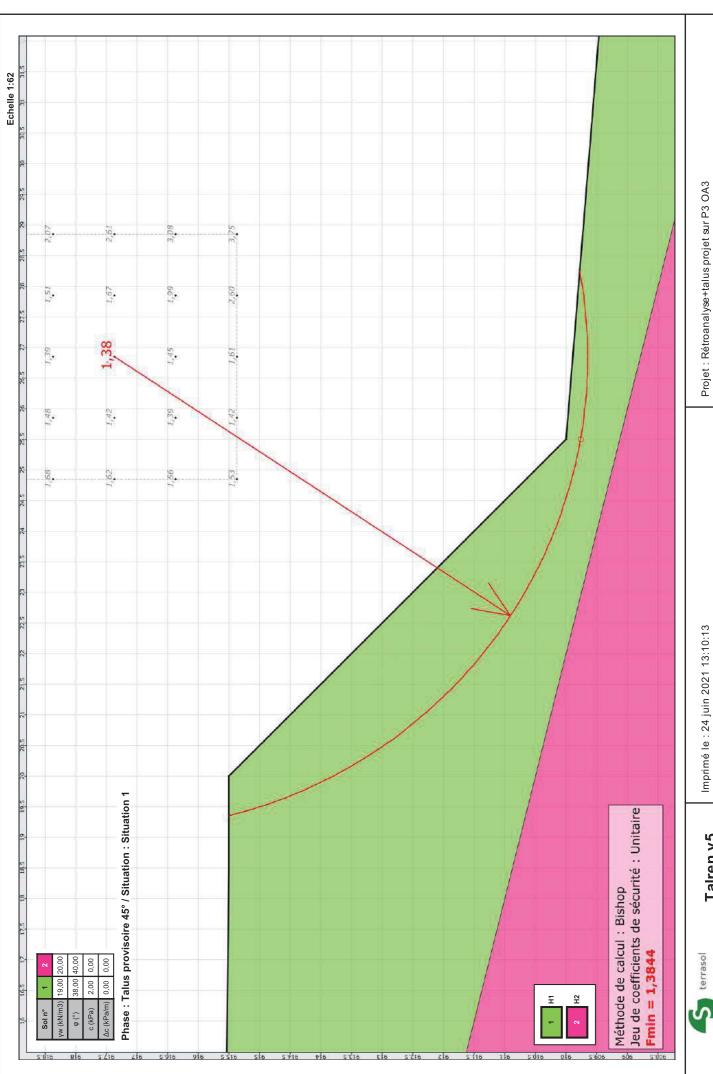
Nombre de centres en X / en Y : en X= 5; en Y= 5

Incrément sur le rayon : 1,000 Nombre d'incréments sur le rayon : 5 Abscisse émergence limite aval : 6,774 Type de recherche : Point de passage imposé Point de passage imposé : X= 25,500; Y= 909,761

Nombre de tranches : 100 Prise en compte du séisme : Non

Résultats

Coefficient de sécurité minimal: 1,3844


Coordonnées du centre critique et rayon du cercle critique : N°= 61; X0= 26,85; Y0= 917,37; R= 7,72

Talren v5

Imprimé le : 24 juin 2021 13:10:13 Calcul réalisé par : GINGER CEBTP

Projet: Rétroanalyse+talus projet sur P3 OA3

Setec
T:\@C\DOSSIERS NICE\2021\CNI2\L.850.0009 - MNCA - G2 AVP - ZAC Pra de Majou - SAINT MARTIN VESUBIE\travail\calculs\Talus\Retroanalyse.t5p

Tairen v5 v5.2.9

Imprimé le : 24 juin 2021 13:10:13 Calcul réalisé par : GINGER CEBTP

Page 7/10

Nom de la phase : Talus définitif 45°

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
1	2	1	H1	3	1	5	H1	4	5	6	H1
5	6	7	H1	33	4	19	H2	34	7	12	H1
42	12	28	H1	44	28	29	H1	49	29	32	H1
50	32	33	H1								

<u>Liste des éléments activés</u> <u>Conditions hydrauliques</u>: Néant

Talren v5 v5.2.9 Imprimé le : 24 juin 2021 13:10:13 Calcul réalisé par : GINGER CEBTP

Projet: Rétroanalyse+talus projet sur P3 OA3

Nom de la phase : Talus définitif 45° Nom de la situation : Situation 1 Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : Unitaire

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гѕ1	1,000	Γ's1	1,000	Γφ	1,000	Гс'	1,000	Гси	1,000
ΓQ	1,000	Fqsl,clou,ab	1,000	Γqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,000
ГрІ	1,000	Га,clou	1,000	Га,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,000

Type de surface de rupture : Circulaire manuelle Origine du quadrillage manuel : X= 23,145; Y= 915,500 Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

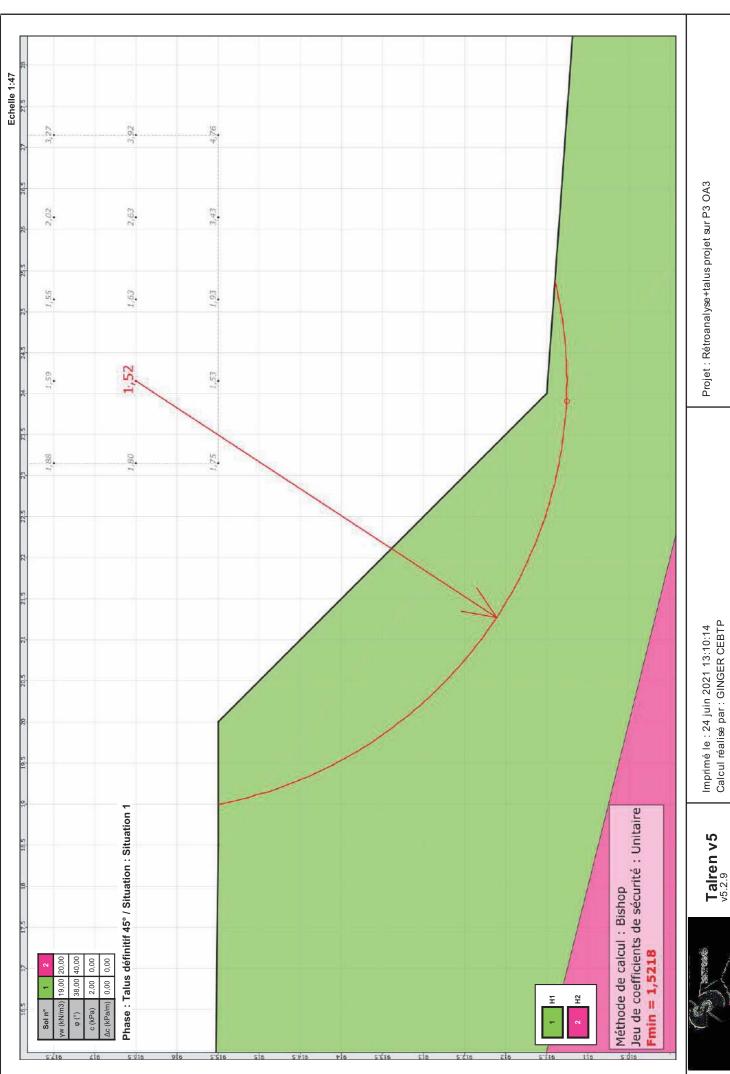
Nombre de centres en X / en Y : en X= 5; en Y= 5

Incrément sur le rayon: 1,000 Nombre d'incréments sur le rayon : 5 Abscisse émergence limite aval: 7,000 Type de recherche : Point de passage imposé Point de passage imposé : X= 23,904; Y= 911,255

Nombre de tranches: 100 Prise en compte du séisme : Non

Résultats

Coefficient de sécurité minimal : 1,5218


Coordonnées du centre critique et rayon du cercle critique : N°= 31; X0= 24,15; Y0= 916,50; R= 5,25

Talren v5

Calcul réalisé par : GINGER CEBTP Projet: Rétroanalyse+talus projet sur P3 OA3

Imprimé le : 24 juin 2021 13:10:13

T:\GC\DOSSIERS NICE\2021\CNI2\CNI2\L.850.0009 - MNCA - G2 AVP - ZAC Pra de Majou - SAINT MARTIN VESUBIE\travail\calculs\Talus\Retroanalyse.t5p

Imprimé le : 24 juin 2021 13:10:14 Calcul réalisé par : GINGER CEBTP

Page 10/10

Données du projet

Numéro d'affaire : CNI2.L.850.0009

Titre du calcul: OA3

Lieu: SAINT MARTIN VESUBIE (06) Commentaires: ZAC de Pra Majou Système d'unités: kN, kPa, kN/m3

γw: 10.0 Couches de sol

	No	m	Couleur	γ	φ	С	Δс	qs clous	рl	KsB	Anisotropie	Favorable	Coefficients de sécurité spécifiques
1	H1	1		19,0	38,00	2,0	0,0	-	-	-	Non	Non	Non
2	2 H2	2		20,0	40,00	0,0	0,0	-	-	-	Non	Non	Non

Couches de sol (cont.)

	Nom	Couleur	Гγ	Гс	Γtan(φ)	Type de cohésion	Courbe
•	H1		-	-	-	Effective	Linéaire
2	H2		-	-	-	Effective	Linéaire

Points

	Х	Υ		Х	Υ		Х	Υ		Х	Υ		Х	Y		Х	Y
1	2,000	919,295	2	1,823	920,798	3	19,931	911,352	4	0,000	915,328	5	12,083	919,293	6	12,348	917,245
7	14,500	916,773	8	20,388	910,924	9	27,624	910,629	10	27,690	909,136	11	40,000	908,730	12	17,377	916,209
					915,190												
20	31,924	909,000	21	27,656	909,822	22	22,615	910,831	23	34,223	911,161	24	32,391	912,157	25	29,808	914,191
26	19,814	911,375	29	19,718	911,394	31	-7,671	921,383	32	-10,000	921,558	33	-10,000	917,297	34	11,875	919,293
35	12,061	917,194															

Segments

	Point 1	Point 2																		
1	2	1	4	5	6	5	6	7	6	7	3	7	3	8	11	7	12	12	12	13
13	13	14	14	14	15	17	17	18	18	10	20	19	11	20	20	19	20	21	20	21
22	21	9	23	21	10	24	21	22	25	22	8	26	22	9	27	22	3	28	17	23
29	23	24	30	24	25	32	25	15	34	26	3	41	29	26	42	29	4	46	31	2
47	31	32	48	4	33	50	5	34	51	1	34	52	34	35	53	35	6			

Surcharges réparties

	Nom	X gauche	Y gauche	q gauche	X droite	Y droite	q droite	Ang/horizontale
1	Voirie	2,000	919,295	20,0	12,083	919,293	20,0	90,00

Talren v5

Imprimé le : 24 juin 2021 13:11:28 Calcul réalisé par : GINGER CEBTP

Projet : OA3

Nom de la phase : Phase 1

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
1	2	1	H1	4	5	6	-	5	6	7	H1
6	7	3	H1	7	3	8	H2	18	10	20	H2
19	11	20	H1	20	19	20	H2	22	21	9	H1
23	21	10	H2	24	21	22	H2	25	22	8	H2
26	22	9	H1	34	26	3	H2	41	29	26	H2
42	29	4	H2	46	31	2	H1	47	31	32	H1
48	4	33	H2	50	5	34	-	51	1	34	H1
52	34	35	H1	53	35	6	H1				

<u>Liste des éléments activés</u>

Surcharges réparties : Voirie

Conditions hydrauliques : Néant

Talren v5

Imprimé le : 24 juin 2021 13:11:28 Calcul réalisé par : GINGER CEBTP

Projet: OA3

Nom de la phase : Phase 1 Nom de la situation : Durable Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : Unitaire

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,000	Гс'	1,000	Гси	1,000
ΓQ	1,000	Fqsl,clou,ab	1,000	Fqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Fqsl,tirant,es	1,000	Γqsl,bande	1,000
ГрІ	1,000	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,000

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 18,810; Y= 917,500
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

Nombre de centres en X / en Y : en X= 5; en Y= 5

Incrément sur le rayon: 1,000

Nombre d'incréments sur le rayon : 10
Abscisse émergence limite aval : -10,000
Type de recherche : Point de passage imposé
Point de passage imposé : X= 19,564; Y= 911,458

Nombre de tranches : 100 Prise en compte du séisme : Non

Résultats

Coefficient de sécurité minimal: 1,1530

Coordonnées du centre critique et rayon du cercle critique : N°= 49; X0= 22,81; Y0= 920,50; R= 9,60

Talren v5

Imprimé le : 24 juin 2021 13:11:28 Calcul réalisé par : GINGER CEBTP

Projet: OA3

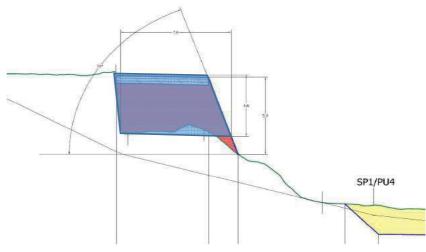
Echelle 1:72 Phase : Phase 1 / Situation : Durable 2,00 0,00 Δc (kPa/m) 0,00 0,00 38,00 40,00 19,00 20,00 c (kPa) (₀) ф

Tairen v5 v5.2.9

Imprimé le : 24 juin 2021 13:11:28 Calcul réalisé par: GINGER CEBTP

Projet: 0A3

Page 4/4


ANNEXE 7 - NOTES DE CALCULS DU REMBLAI RENFORCE OA1

- Note de calculs de justification de la stabilité externe locale
- Rétroanalyses sur le profil transversal de la Z.A.C. n°4
- Remblai renforcé de l'OA1 sur le profil transversal de la Z.A.C. n°4 (stabilités générale et mixte)

Dossier: CNI2.L.850.0009 Annexes

JUSTIFICATION DE LA STABILITE EXTERNE LOCALE

Sol d'assise	H1						Remblais projet		Hmax	4.6	m	épaisseur
		Hmax	3.5	m					Hmax	5.9	m	hauteur talus
		γ	19	kN/m3				Largeur e	en base	7.6	m	
		PI	0.5	MPa					γ	20	kN/m3	
		Em	3	Мра					φ'	36	•	
		α+	0.5						β	0	pente amont	
		α-	0.3						λ	-20	pente aval ou fruit	
		kp		portance					δ/φ'	2/3		
		φ'	30	•	0.5235987	78			β/φ'	0		
		Ιβ	0.1						δ	24	0	0.41887902
									ka	0.124	poussée	
								L _{ren}	forcement	7	m	L _{mayenne}
								Surface trans	versale	35	m²	
								Encast	rement	0	m	
Surcharges		voiries	20	kN/m²								
								Pondérations		ELS	ELU	
									G	1	1.35	
									Q	1	1.5	
									$\gamma_{R;v}$	2.3	1.4	
									$\gamma_{R;d;v}$	1	1	peu sensible aux déformations
									Y _{R;h}		1.1	
									$\gamma_{R;d;h}$		0.9	peu sensible aux déformations
Efforts appliqués	ı	Poussée	Pmax	41.0	kN/ml		Bras de levier	par rapport pied talus	(O)			
			Нр	37.5	kN/ml			2.0		m		
			Vp	16.7	kN/ml			7.6		m		
	Poids propre r	emblais	Vr	700.0	kN/ml			3.8		m		
	Su	rcharge	Hs	2.5	kN/ml	RM2565		3.0		m		
			Vs	négligée	kN/ml	Voirie projet	t	3.8				
	Somr	nes ELU	Hd	54.3	kN/ml				M _{déstab} .	110.4	kN.m/ml	ELU
			Vd	967.5	kN/ml				$M_{stab.}$	3762.1	kN.m/ml	ELU
									$M_{/O}$	3651.7	kN.m/ml	ELU
									, -		-	

Excentricité résultante sur la base du remblai

	M _{/O} /Vd 3.77 n	n	distance rés	sultante/O	
	excentricité an	nont:e=	0.03	m	
Tassements ELS	min	3.6	cm		
	max	5.4	cm		
Poinçonnement ELU	Vd	112	kPa		ELS
romçomement ELO	Vu	154.2	kPa		ELU
	R0	0	kPa		ELS
		0	kPa		ELU
	Rv;d	132	kPa		ELS
		2171	kPa		ELU
	Vd-R0	112	kPa	OK	ELS
		154.2	kPa	OK	ELU
Glissement ELU	Rh;d	564	kN/ml		
	Hd	54	kN/ml	OK	
	Rp;d	-	négligée		

Données du projet

Numéro d'affaire : CNI2.L.850.0009

Titre du calcul : P4-Amont **Lieu** : ST MARTIN VESUBIE

Commentaires : Remblai renforcé (type Terramesh vert)

Système d'unités : kN, kPa, kN/m3

γw: 10.0 Couches de sol

Nom	Couleur	γ	φ	С	Δс	qs clous	рl	KsB	Anisotropie	Favorable	Coefficients de sécurité spécifiques
Remblais du site		19,0	38,00	2,0	0,0	-	-	-	Non	Non	Non
Alluvions fluvio-glaciaires		20,0	40,00	0,0	0,0	-	-	-	Non	Non	Non
Remblais projet		20,0	36,00	0,0	0,0	-	-	-	Non	Non	Non

Couches de sol (cont.)

	Nom	Couleur	Гγ	Гс	Γtan(φ)	Type de cohésion	Courbe
1	Remblais du site		-	-	-	Effective	Linéaire
2	Alluvions fluvio-glaciaires		-	-	-	Effective	Linéaire
3	Remblais projet		-	-	-	Effective	Linéaire

Points

	Х	Υ		Х	Υ		Х	Υ		Х	Υ		Х	Υ		Х	Υ
1	36,000	903,800	2	30,000	903,858	3	28,121	905,750	4	27,682	906,190	5	26,114	906,266	6	24,605	906,706
7	12,341	910,000	8	0,898	916,094	9	0,000	916,094	10	12,000	916,000	11	12,287	911,822	12	18,814	911,729
13	20,318	910,000	14	21,000	909,500	15	22,000	909,315	16	18,500	915,816	17	36,000	905,500	18	29,592	905,349
19	35,679	904,642	20	36,000	904,500	21	19,794	911,676									

Segments

	Point 1	Point 2																		
1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6	7	7	7	8
8	8	9	9	8	10	10	10	11	11	11	12	12	12	13	13	13	14	14	14	15
15	15	6	16	10	16	18	3	5	19	4	17	20	3	18	21	18	19	22	19	20
23	16	21	24	13	21	25	12	21												

Surcharges réparties

	Nom	X gauche	Y gauche	q gauche	X droite	Y droite	q droite	Ang/horizontale
•	RM2565	0,898	916,094	20,0	12,000	916,000	20,0	90,00
2	Voirie projet	12,000	916,000	20,0	18,500	915,816	20,0	90,00

Bandes

	Nom	Х	Υ	Espacement horizontal	Inclinaison/horizontale	Largeur base de diffusion	Angle de diffusion	TR	Longueur	Largeur
•	1 Bande	19,700	911,862	1,000	0,000	1,000	10,00	25,0	7,000	1,000
2	Bande 2	19,419	912,613	1,000	0,000	1,000	10,00	25,0	7,000	1,000
(Bande 3	19,200	913,362	1,000	0,000	1,000	10,00	25,0	7,000	1,000
4	Bande 4	19,000	914,112	1,000	0,000	1,000	10,00	25,0	6,500	1,000
	Bande	18,794	914,877	1,000	0,000	1,000	10,00	25,0	6,500	1,000
6	Bande (18,550	915,613	1,000	0,000	1,000	10,00	25,0	6,500	1,000

Bandes (cont.)

	Nom	γremblai	Type de pondération	Traction	μ0*	μ1*
1	Bande 1	20,0	Minorateur (1)	Externe	1,300	0,654
2	Bande 2	20,0	Minorateur (1)	Externe	1,300	0,654
3	Bande 3	20,0	Minorateur (1)	Externe	1,300	0,654
4	Bande 4	20,0	Minorateur (1)	Externe	1,300	0,654
5	Bande 5	20,0	Minorateur (1)	Externe	1,300	0,654
6	Bande 6	20,0	Minorateur (1)	Externe	1,300	0,654

Talren v5

Imprimé le : 28 juin 2021 10:10:59 Calcul réalisé par : GINGER CEBTP

Projet : P4-Amont

Nom de la phase : Rétroanalyse

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
4	4	5	Remblais du site	5	5	6	Alluvions fluvio-glaciaires	6	6	7	Alluvions fluvio-glaciaires
7	7	8	Alluvions fluvio-glaciaires	8	8	9	Alluvions fluvio-glaciaires	9	8	10	Remblais du site
10	10	11	Remblais du site	11	11	12	Remblais du site	12	12	13	Remblais du site
13	13	14	Remblais du site	14	14	15	Remblais du site	15	15	6	Remblais du site
18	3	5	Alluvions fluvio-glaciaires	19	4	17	Remblais du site	20	3	18	Alluvions fluvio-glaciaires
21	18	19	Alluvions fluvio-glaciaires	22	19	20	Alluvions fluvio-glaciaires				

<u>Liste des éléments activés</u>

Surcharges réparties : RM2565

Conditions hydrauliques : Néant

Talren v5

Calcul réalisé par Projet : P4-Amont

Imprimé le : 28 juin 2021 10:11:00 Calcul réalisé par : GINGER CEBTP

Nom de la phase : Rétroanalyse

Nom de la situation : Calage remblais du site-Amont

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_Approche 3(A2)_RemblaisRenforcés_Phase durable_PeuSensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,000	Fqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,100
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,100

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 12,500; Y= 913,165
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

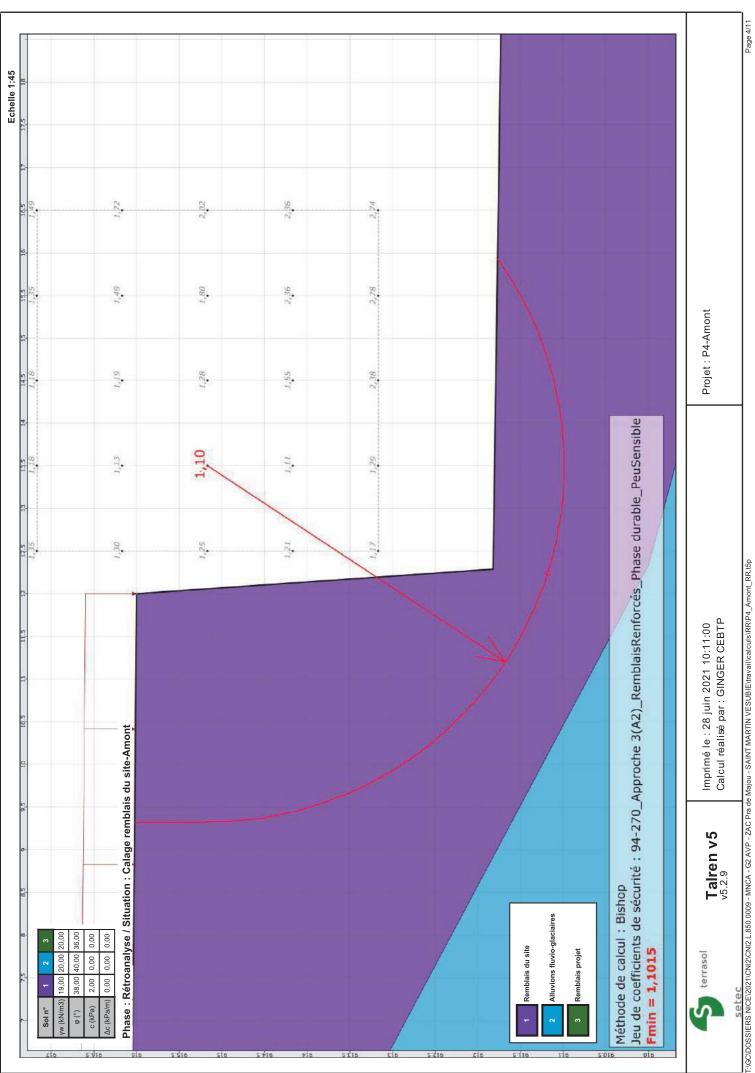
Nombre de centres en X / en Y : en X= 5; en Y= 5

Incrément sur le rayon : 1,000 Nombre d'incréments sur le rayon : 5 Abscisse émergence limite aval : 0,000 Type de recherche : Point de passage imposé Point de passage imposé : X= 12,242; Y= 911,179

Nombre de tranches : 100 Prise en compte du séisme : Non

Résultats

Coefficient de sécurité minimal: 1,1015


Coordonnées du centre critique et rayon du cercle critique : N°= 56; X0= 13,50; Y0= 915,17; R= 4,18

Talren v5

Imprimé le : 28 juin 2021 10:11:00 Calcul réalisé par : GINGER CEBTP

Projet: P4-Amont

Nom de la phase : Rétroanalyse

Nom de la situation : Calage remblais du site-Aval

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_Approche 3(A2)_RemblaisRenforcés_Phase durable_PeuSensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Fqsl,clou,ab	1,000	Fqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Γqsl,bande	1,100
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,100

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 24,500; Y= 910,273
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

Nombre de centres en X / en Y : en X= 10; en Y= 10

Incrément sur le rayon: 1,000

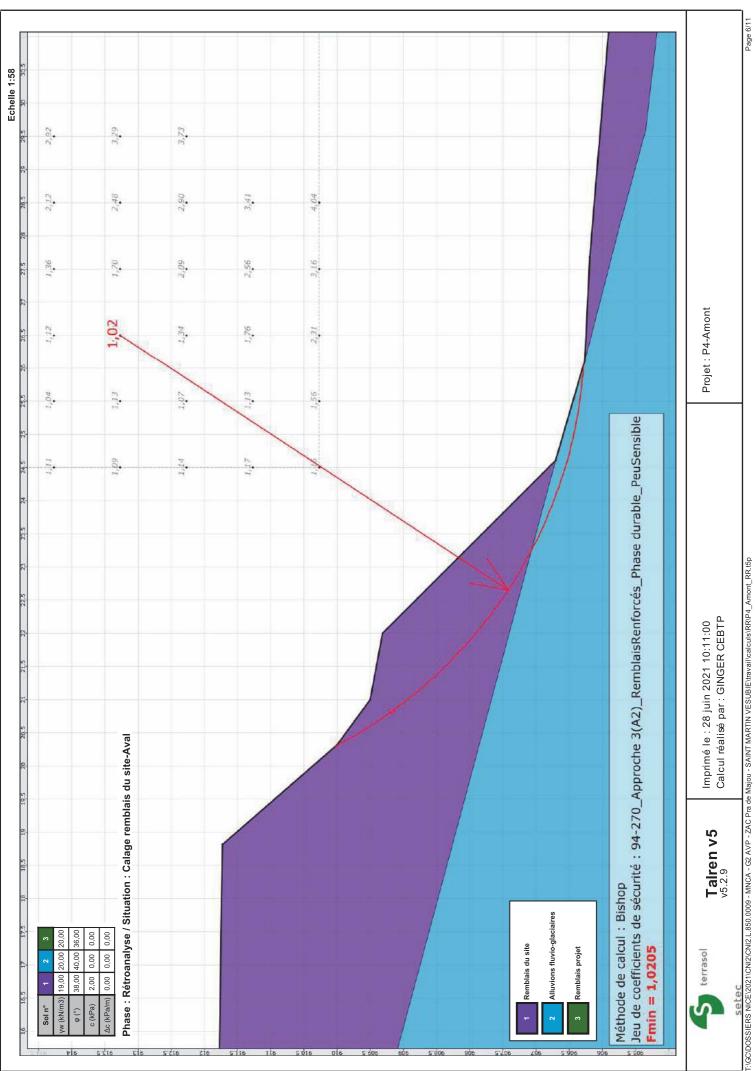
Nombre d'incréments sur le rayon : 10
Abscisse émergence limite aval : 12,500
Type de recherche : Point de passage imposé
Point de passage imposé : X= 20,820; Y= 909,172

Nombre de tranches : 100 Prise en compte du séisme : Non

Résultats

Coefficient de sécurité minimal: 1,0205

Coordonnées du centre critique et rayon du cercle critique: N°= 132; X0= 26,50; Y0= 913,27; R= 7,00



Talren v5

Ca

Imprimé le : 28 juin 2021 10:11:00 Calcul réalisé par : GINGER CEBTP

Projet: P4-Amont

Nom de la phase : Situation durable (1)

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
4	4	5	Remblais du site	5	5	6	Alluvions fluvio-glaciaires	6	6	7	Alluvions fluvio-glaciaires
7	7	8	Alluvions fluvio-glaciaires	8	8	9	Alluvions fluvio-glaciaires	9	8	10	Remblais du site
10	10	11	Remblais du site	11	11	12	Remblais du site	12	12	13	Remblais du site
13	13	14	Remblais du site	14	14	15	Remblais du site	15	15	6	Remblais du site
16	10	16	Remblais projet	18	3	5	Alluvions fluvio-glaciaires	19	4	17	Remblais du site
20	3	18	Alluvions fluvio-glaciaires	21	18	19	Alluvions fluvio-glaciaires	22	19	20	Alluvions fluvio-glaciaires
23	16	21	Remblais projet	24	13	21	Remblais projet				

Liste des éléments activés

Surcharges réparties : RM2565 Voirie projet

Bandes: Bande 1

Bande 2 Bande 3 Bande 4 Bande 5 Bande 6

Conditions hydrauliques : Néant

Talren v5

Imprimé le : 28 juin 2021 10:11:01 Calcul réalisé par : GINGER CEBTP

Projet : P4-Amont

Nom de la phase : Situation durable (1) Nom de la situation : Stabilité générale

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_Approche 3(A2)_RemblaisRenforcés_Phase durable_PeuSensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,000	Fqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,100
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,100

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 24,724; Y= 924,500
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

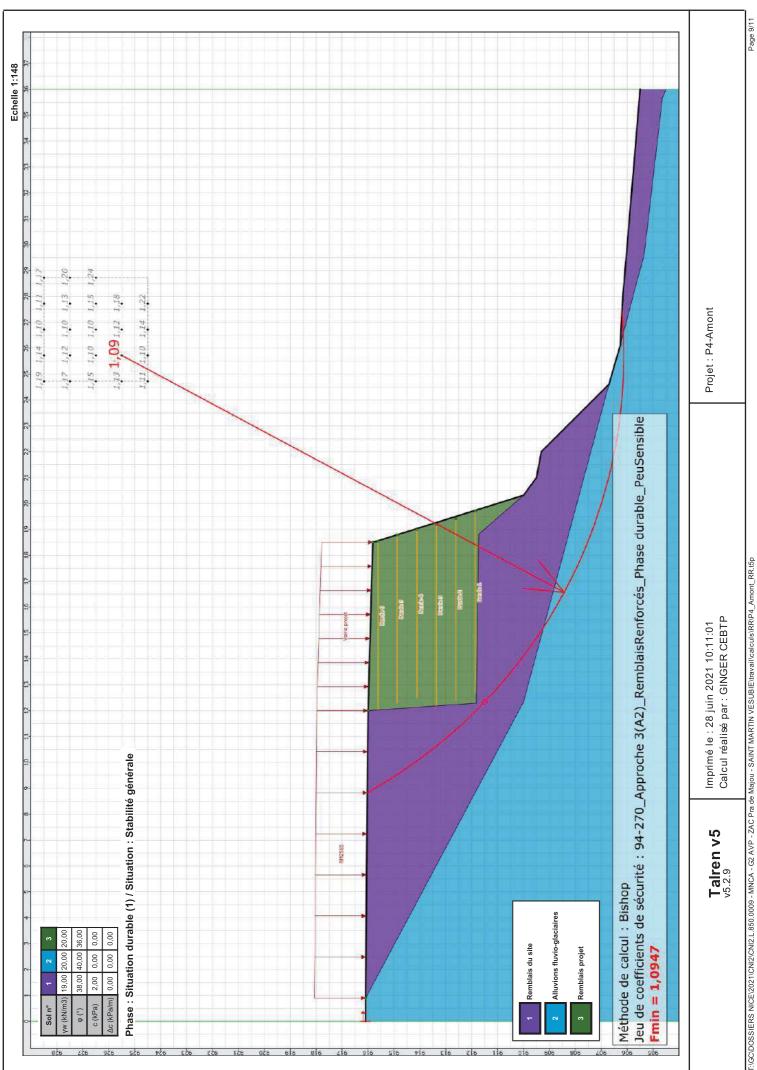
Nombre de centres en X / en Y : en X= 5; en Y= 5

Incrément sur le rayon : 1,000 Nombre d'incréments sur le rayon : 5 Abscisse émergence limite aval : 0,000 Type de recherche : Point de passage imposé Point de passage imposé : X= 12,334; Y= 911,500

Nombre de tranches : 100 Prise en compte du séisme : Non

Résultats

Coefficient de sécurité minimal : 1,0947


Coordonnées du centre critique et rayon du cercle critique : N°= 21; X0= 25,72; Y0= 925,50; R= 19,37

Talren v5

Imprimé le : 28 juin 2021 10:11:01 Calcul réalisé par : GINGER CEBTP

Projet: P4-Amont

Nom de la phase : Situation durable (1) Nom de la situation : Stabilité mixte

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_Approche 3(A2)_RemblaisRenforcés_Phase durable_PeuSensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,000	Fqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,100
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,100

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 29,303; Y= 922,337
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

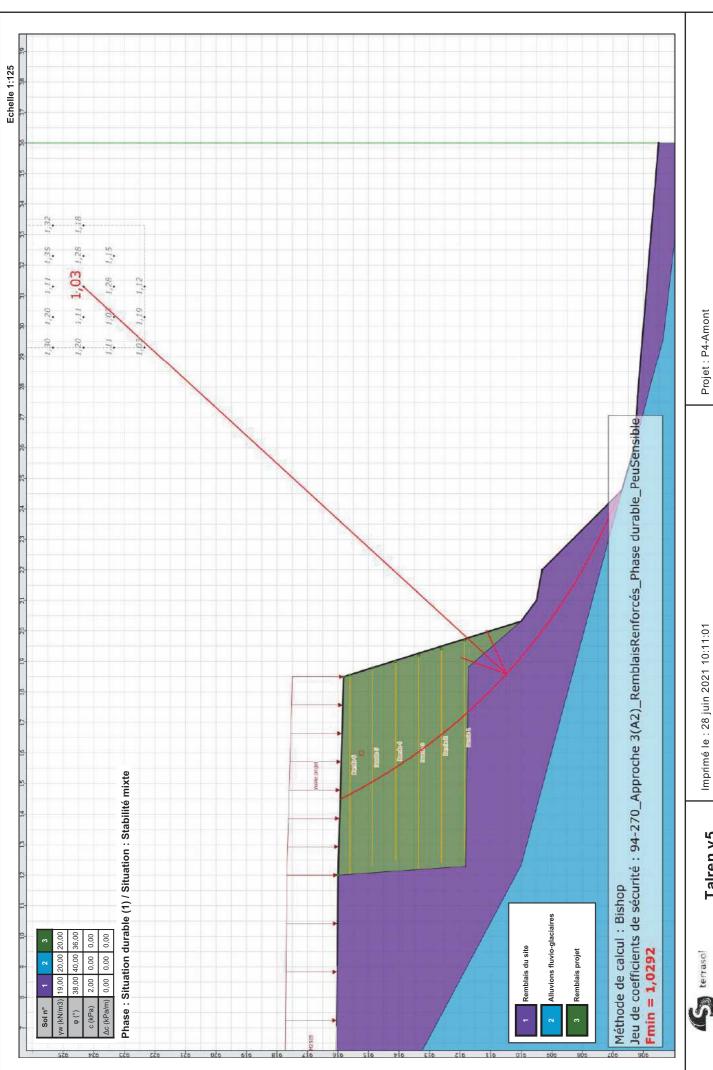
Nombre de centres en X / en Y : en X= 5; en Y= 5

Incrément sur le rayon : 1,000 Nombre d'incréments sur le rayon : 2 Abscisse émergence limite aval : 0,000 Type de recherche : Point de passage imposé Point de passage imposé : X= 16,000; Y= 915,238

Nombre de tranches : 100 Prise en compte du séisme : Non

Résultats

Coefficient de sécurité minimal : 1,0292


Coordonnées du centre critique et rayon du cercle critique : N°= 23; X0= 31,30; Y0= 924,34; R= 18,80

Talren v5

Imprimé le : 28 juin 2021 10:11:01 Calcul réalisé par : GINGER CEBTP

Projet: P4-Amont

Setec T:\GC\DOSSIERS NICE\2021\CNI2\CNI2\CNI2\CNI2\L850.0009 - MNCA - G2 AVP - ZAC Pra de Majou - SAINT MARTIN VESUBIE\travail\calculs\RR\P4_Amont_RR.t5p **Tairen v5** v5.2.9

Imprimé le : 28 juin 2021 10:11:01 Calcul réalisé par : GINGER CEBTP

Page 11/11

ANNEXE 8 - NOTES DE CALCULS PAROIS CLOUEES OA2

Note de calculs de justification sur le profil transversal OA2 n°7 (Talren)

Dossier: CNI2.L.850.0009

Données du projet

Numéro d'affaire : CNI2.L.850.0009

Titre du calcul: OA2-P7

Lieu: SAINT MARTIN VESUBIE (06)
Commentaires: Paroi clouée
Système d'unités: kN, kPa, kN/m3

γw: 10.0 Couches de sol

Г	Nom	Couleur	γ	φ	С	Δс	qs clous	рl	KsB	Anisotropie	Favorable	Coefficients de sécurité spécifiques
1	H1		19,0	7		0,0	-	-	Non	Non	Non	
2	H2		20,0	40,00	0,0	0,0	190,0	-	-	Non	Non	Non
3	mur RM2565		25,0	50,00	50,0	0,0	-	-	-	Non	Non	Non

Couches de sol (cont.)

	Nom	Couleur	Гγ	Гс	Γtan(φ)	Type de cohésion	Courbe
1	H1		-	-	-	Effective	Linéaire
2	H2		-	-	-	Effective	Linéaire
3	mur RM2565		-	-	-	Effective	Linéaire

Points

	Х	Υ		Х	Υ		Х	Y		Х	Y		Х	Y		Х	Υ
1	0,000	919,000	2	9,000	918,500	3	9,000	917,000	4	17,000	916,835	5	17,000	917,000	6	18,238	917,000
7	20,000	912,844	8	20,240	912,830	9	20,903	912,830	10	22,134	913,263	11	23,285	913,136	12	25,724	912,000
13	26,395	912,000	14	28,297	910,293	15	42,000	908,220	16	42,000	907,000	17	20,000	911,248	18	10,500	916,969
19	20,361	910,647	20	20,331	911,184	21	26,830	910,684	22	23,033	910,662	23	26,842	911,262	24	30,500	908,677
25	29,442	909,425	26	42,000	908,000	27	34,550	908,439	28	18,000	917,000	29	19,708	912,774	30	8,879	918,507
31	8,879	917,000	32	20,269	912,298	33	25,183	912,252	34	20,324	911,317	35	27,233	911,248	36	26,842	911,252
37	26,856	911,252															

Segments

	Point 1	Point 2																		
2	2	3	4	4	5	6	6	7	7	7	8	8	8	9	9	9	10	10	10	11
12	12	13	14	14	15	16	3	18	17	4	18	18	17	18	21	20	17	22	20	19
23	19	22	24	22	20	26	22	21	29	25	22	31	25	24	32	24	27	33	27	25
34	27	16	35	27	26	36	5	28	37	6	28	38	28	29	39	29	7	40	1	30
41	2	30	42	30	31	43	31	3	44	8	32	46	11	33	47	12	33	48	32	33
49	20	34	50	32	34	51	13	35	52	14	35	53	34	36	54	36	21	55	36	23
56	36	37	57	37	23	58	37	25	59	37	35									

Surcharges réparties

	Nom	X gauche	Y gauche	q gauche	X droite	Y droite	q droite	Ang/horizontale
1	RM2565	9,000	917,000	20,0	10,500	916,969	20,0	90,00
2	RM2565	10,500	916,969	20,0	17,000	916,835	20,0	90,00

Clous

	Nom	X	Υ	Espacement horizontal	Inclinaison/horizontale	Largeur base de diffusion	Angle de diffusion	TR	Longueur	Rsc
1	Clou 1	1 20,231	912,500	1,000	15,00	1,000	10,00	200,0	3,000	-
2	Clou 2	20,292	911,500	1,000	15,00	1,000	10,00	200,0	3,000	-

Clous (cont.)

	Nom	Rayon équivalent	Règle de calcul	Cisaillement imposé Rcis	Moment de plastification	EI	Angle critique	Traction	Cisaillement
1	Clou 1	0,090	Tcal,Cimp	0,0	-	-	5,00	Externe	-
2	Clou 2	0,090	Tcal,Cimp	0,0	-	-	5,00	Externe	-

Clous (cont.)

Non	qsclous issus de	θbarre	σе	Valeur de TR donnée	Rsc calculée à partir de qs	Cisaillement variable le long du clou
1 Clou	1 Abaques	-	-	Oui	Oui	Non
2 Clou	2 Abaques	-	-	Oui	Oui	Non

Talren v5

Imprimé le : 28 juin 2021 13:23:45 Calcul réalisé par : GINGER CEBTP

Projet : OA2-P7

Nom de la phase : Calage amont

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
2	2	3	H2	4	4	5	H1	6	6	7	mur RM2565
7	7	8	H1	8	8	9	H1	9	9	10	H1
10	10	11	H1	12	12	13	H1	14	14	15	H1
16	3	18	H2	17	4	18	H1	18	17	18	H2
21	20	17	H2	24	22	20	H2	29	25	22	H2
33	27	25	H2	34	27	16	H2	36	5	28	H1
37	6	28	mur RM2565	38	28	29	H1	39	29	7	H1
40	1	30	H2	41	2	30	H2	46	11	33	H1
47	12	33	H1	51	13	35	H1	52	14	35	H1

Liste des éléments activés

Surcharges réparties : RM2565

RM2565

Conditions hydrauliques: Néant

Talren v5

Imprimé le : 28 juin 2021 13:23:45 Calcul réalisé par : GINGER CEBTP

Projet : OA2-P7

Nom de la phase : Calage amont
Nom de la situation : Situation 1 (1)

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_PC_App3_Durable&Transitoire_Sensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гѕ1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,150	Γqsl,clou,es	1,150	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Γqsl,bande	1,000
ГрІ	1,400	Га,clou	1,000	Га,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,200

Type de surface de rupture : Circulaire manuelle

Origine du quadrillage manuel : X= 19,251; Y= 914,713

Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

Nombre de centres en X / en Y : en X= 10; en Y= 10

Incrément sur le rayon: 1,000

Nombre d'incréments sur le rayon : 10
Abscisse émergence limite aval : 0,000
Type de recherche : Point de passage imposé
Point de passage imposé : X= 17,500; Y= 917,000

Nombre de tranches : 100 Prise en compte du séisme : Non

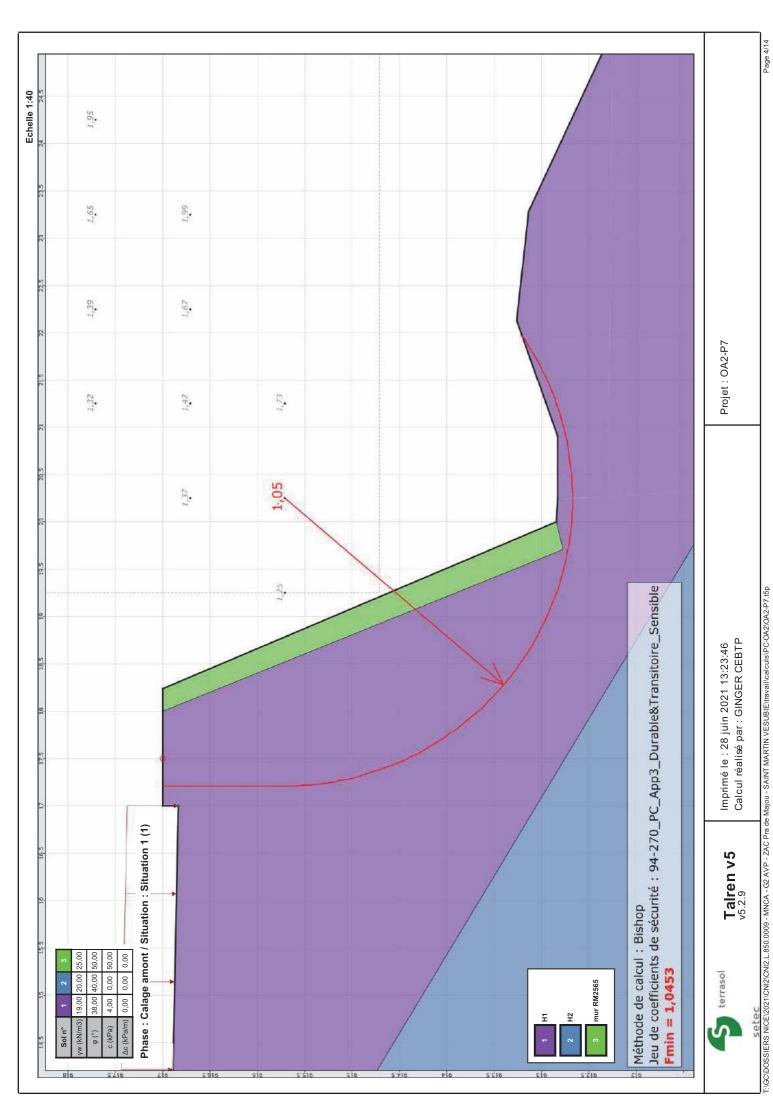
Conditions de passage dans certains sols : Passage refusé dans mur RM2565

et

Passage refusé dans H2

Résultats

Coefficient de sécurité minimal: 1,0453


Coordonnées du centre critique et rayon du cercle critique : N°= 13; X0= 20,25; Y0= 915,71; R= 3,04

Talren v5

Imprimé le : 28 juin 2021 13:23:45 Calcul réalisé par : GINGER CEBTP

Projet: OA2-P7

Nom de la phase : Calage amont Nom de la situation : Situation 2 Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_PC_App3_Durable&Transitoire_Sensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гѕ1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,150	Fqsl,clou,es	1,150	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,000
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,200

Type de surface de rupture : Circulaire manuelle

Origine du quadrillage manuel : X= 27,209; Y= 911,270

Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

Nombre de centres en X / en Y : en X= 5; en Y= 5

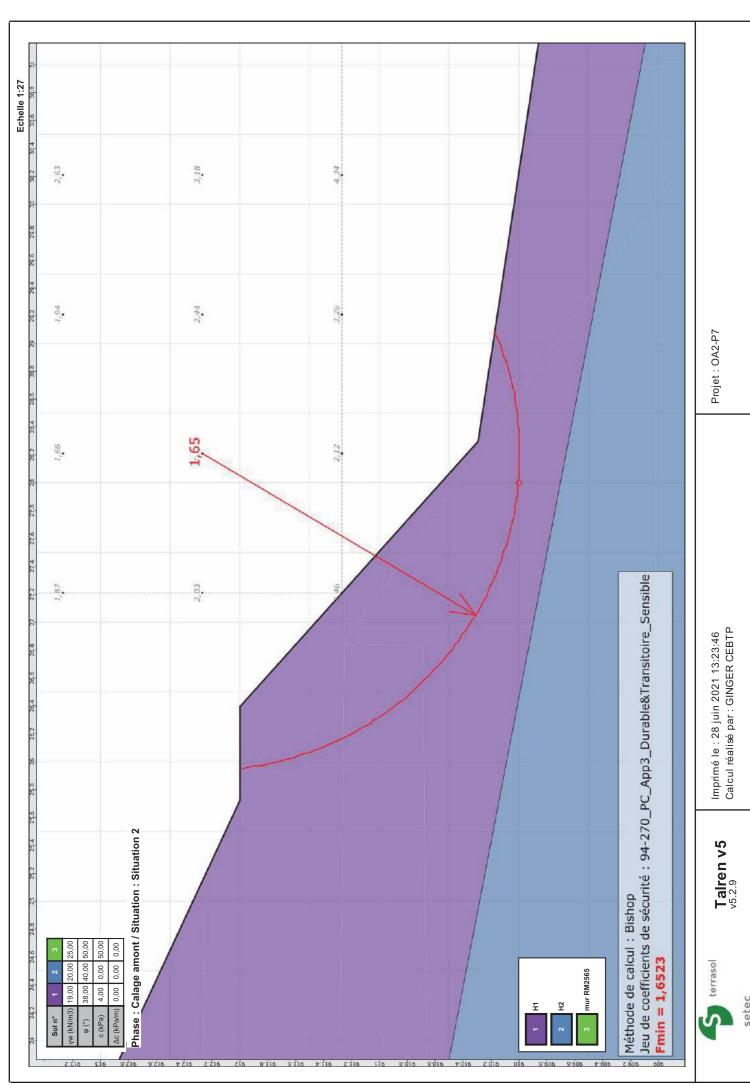
Incrément sur le rayon : 1,000 Nombre d'incréments sur le rayon : 5 Abscisse émergence limite aval : 12,000 Type de recherche : Point de passage imposé Point de passage imposé : X= 28,000; Y= 910,000

Nombre de tranches : 100 Prise en compte du séisme : Non

Conditions de passage dans certains sols : Passage refusé dans mur RM2565

Résultats

Coefficient de sécurité minimal: 1,6523


Coordonnées du centre critique et rayon du cercle critique : N° = 31; X0= 28,21; Y0= 912,27; R= 2,27

Talren v5

Imprimé le : 28 juin 2021 13:23:46 Calcul réalisé par : GINGER CEBTP

Projet: OA2-P7

Setec
T:\GC\DOSSIERS NICE\2021\CNI2\CNI2\CNI2\L.850.0009 - MNCA - G2 AVP - ZAC Pra de Majou - SAINT MARTIN VESUBIE\travail\calculs\PC-OA2\(OA2-P7.15p)

Page 6/14

Données de la phase 2

Nom de la phase : OA2-P7

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
2	2	3	mur RM2565	4	4	5	H1	6	6	7	mur RM2565
7	7	8	H1	16	3	18	H2	17	4	18	H1
18	17	18	H2	21	20	17	H2	22	20	19	H2
23	19	22	H2	26	22	21	H1	29	25	22	H2
31	25	24	H2	32	24	27	H2	34	27	16	H2
35	27	26	H1	36	5	28	H1	37	6	28	mur RM2565
38	28	29	H1	39	29	7	H1	40	1	30	H2
41	2	30	mur RM2565	42	30	31	H2	43	31	3	H2
44	8	32	H1	49	20	34	H1	50	32	34	H1
54	36	21	H1	55	36	23	H1	57	37	23	H1
58	37	25	H1								

Liste des éléments activés

Surcharges réparties : RM2565

RM2565

Clous: Clou 1 Clou 2

Conditions hydrauliques: Néant

Talren v5

Imprimé le : 28 juin 2021 13:23:46 Calcul réalisé par : GINGER CEBTP

Nom de la phase : OA2-P7

Nom de la situation : Stabilité générale

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_PC_App3_Durable&Transitoire_Sensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Fqsl,clou,ab	1,150	Fqsl,clou,es	1,150	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,000
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,200

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 20,316; Y= 916,000
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

Nombre de centres en X / en Y : en X= 5; en Y= 5

Incrément sur le rayon : 1,000

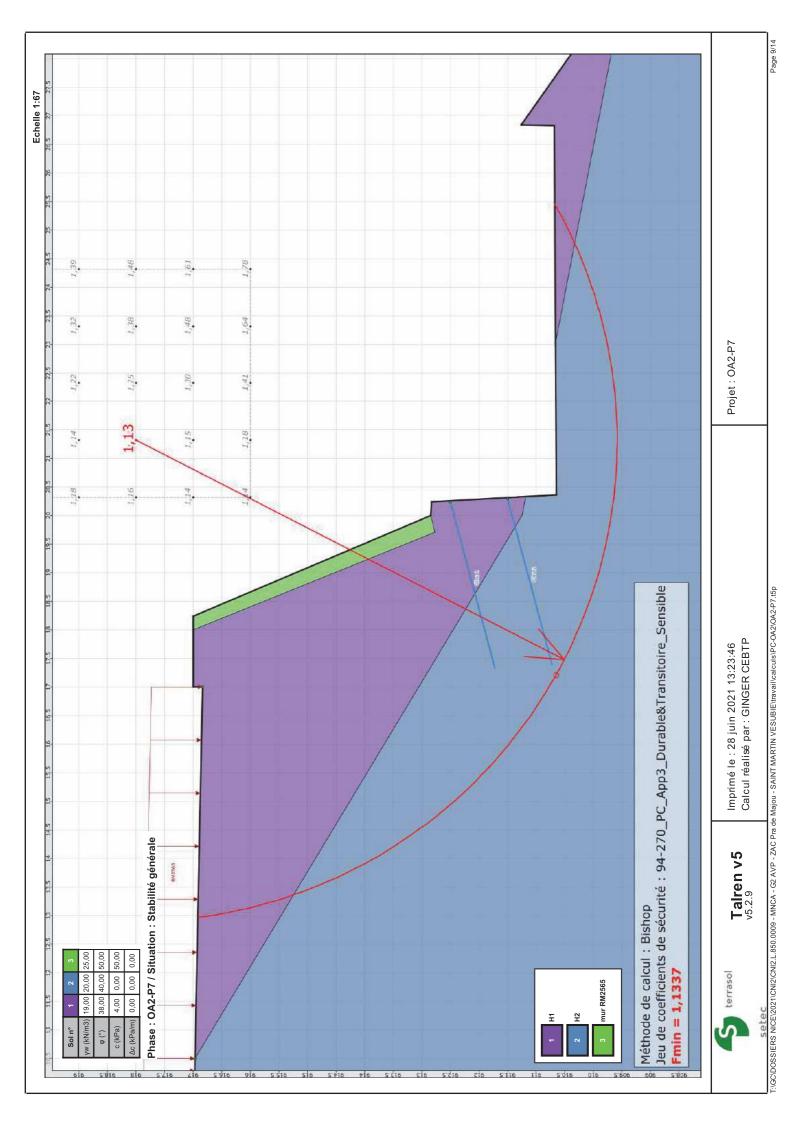
Nombre d'incréments sur le rayon : 10
Abscisse émergence limite aval : 0,000
Type de recherche : Point de passage imposé
Point de passage imposé : X= 17,207; Y= 910,649

Nombre de tranches : 100 Prise en compte du séisme : Non

Conditions de passage dans certains sols : Passage refusé dans mur RM2565

Résultats

Coefficient de sécurité minimal: 1,1337


 $\textbf{Coordonn\'ees du centre critique et rayon du cercle critique}: N^\circ = 111; X0 = 21,32; Y0 = 918,00; R = 8,42$

Talren v5

Imprimé le : 28 juin 2021 13:23:46 Calcul réalisé par : GINGER CEBTP

Projet : OA2-P7

Nom de la phase : OA2-P7

Nom de la situation : Stabilité mixte

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_PC_App3_Durable&Transitoire_Sensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,150	Fqsl,clou,es	1,150	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,000
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,200

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 22,392; Y= 919,084
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

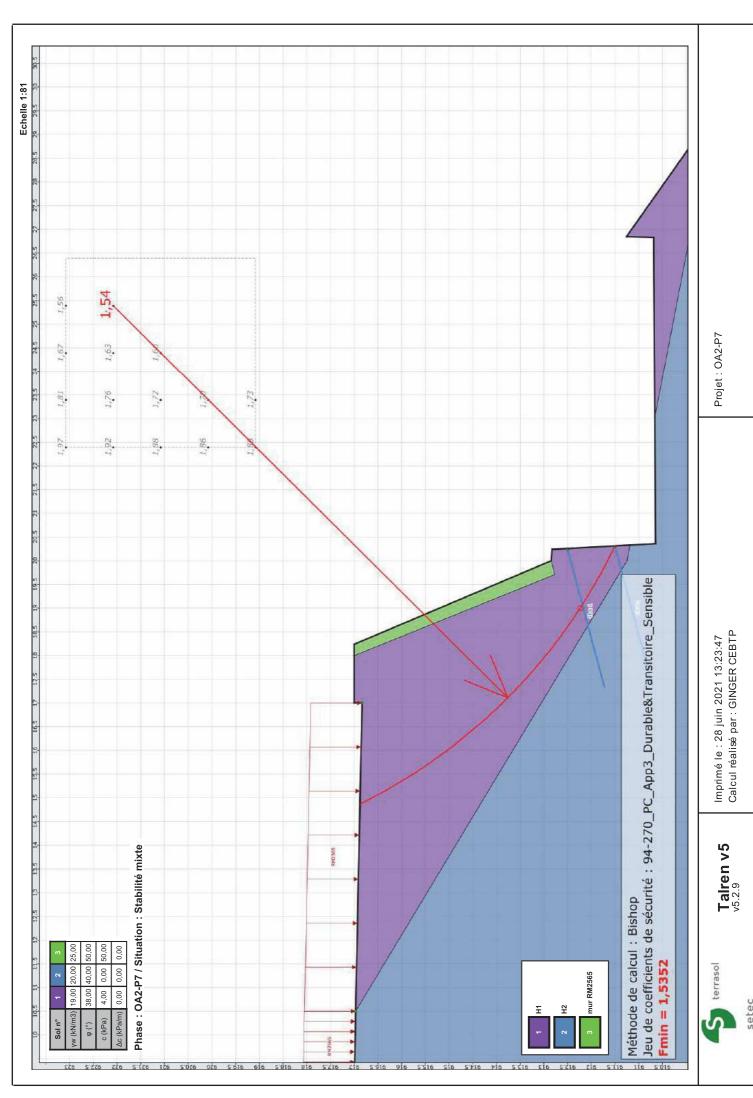
Nombre de centres en X / en Y : en X= 5; en Y= 5

Incrément sur le rayon : 1,000 Nombre d'incréments sur le rayon : 1 Abscisse émergence limite aval : 0,000 Type de recherche : Point de passage imposé Point de passage imposé : X= 19,000; Y= 912,232

Nombre de tranches : 100 Prise en compte du séisme : Non

Conditions de passage dans certains sols : Passage refusé dans mur RM2565

Résultats


Coefficient de sécurité minimal: 1,5352

Coordonnées du centre critique et rayon du cercle critique : N°= 19; X0= 25,39; Y0= 922,08; R= 11,74

Talren v5

Imprimé le : 28 juin 2021 13:23:47 Calcul réalisé par : GINGER CEBTP

Setec
T:\GC\DOSSIERS NICE\2021\CNI2\CNI2\CNI2\L.850.0009 - MNCA - G2 AVP - ZAC Pra de Majou - SAINT MARTIN VESUBIE\travail\calculs\PC-OA2\(OA2-P7.15p)

Page 11/14

Données de la phase 3

Nom de la phase : OA2-P7 - Provisoire

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
2	2	3	mur RM2565	4	4	5	H1	6	6	7	mur RM2565
7	7	8	H1	12	12	13	H1	14	14	15	H1
16	3	18	H2	17	4	18	H1	18	17	18	H2
21	20	17	H2	24	22	20	H2	29	25	22	H2
33	27	25	H2	34	27	16	H2	36	5	28	H1
37	6	28	mur RM2565	38	28	29	H1	39	29	7	H1
40	1	30	H2	41	2	30	mur RM2565	42	30	31	H2
43	31	3	H2	44	8	32	H1	47	12	33	H1
48	32	33	H1	51	13	35	H1	52	14	35	H1

Liste des éléments activés

Surcharges réparties : RM2565

RM2565

Conditions hydrauliques: Néant

Talren v5

Imprimé le : 28 juin 2021 13:23:47 Calcul réalisé par : GINGER CEBTP

Nom de la phase : OA2-P7 - Provisoire Nom de la situation : Stabilité provisoire

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_PC_App3_Durable&Transitoire_Sensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,150	Fqsl,clou,es	1,150	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Fqsl,bande	1,000
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,000	Гbuton	1,000	Гs3	1,200

Type de surface de rupture : Circulaire manuelle

Origine du quadrillage manuel : X= 22,361; Y= 918,736

Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

Nombre de centres en X / en Y : en X= 5; en Y= 5

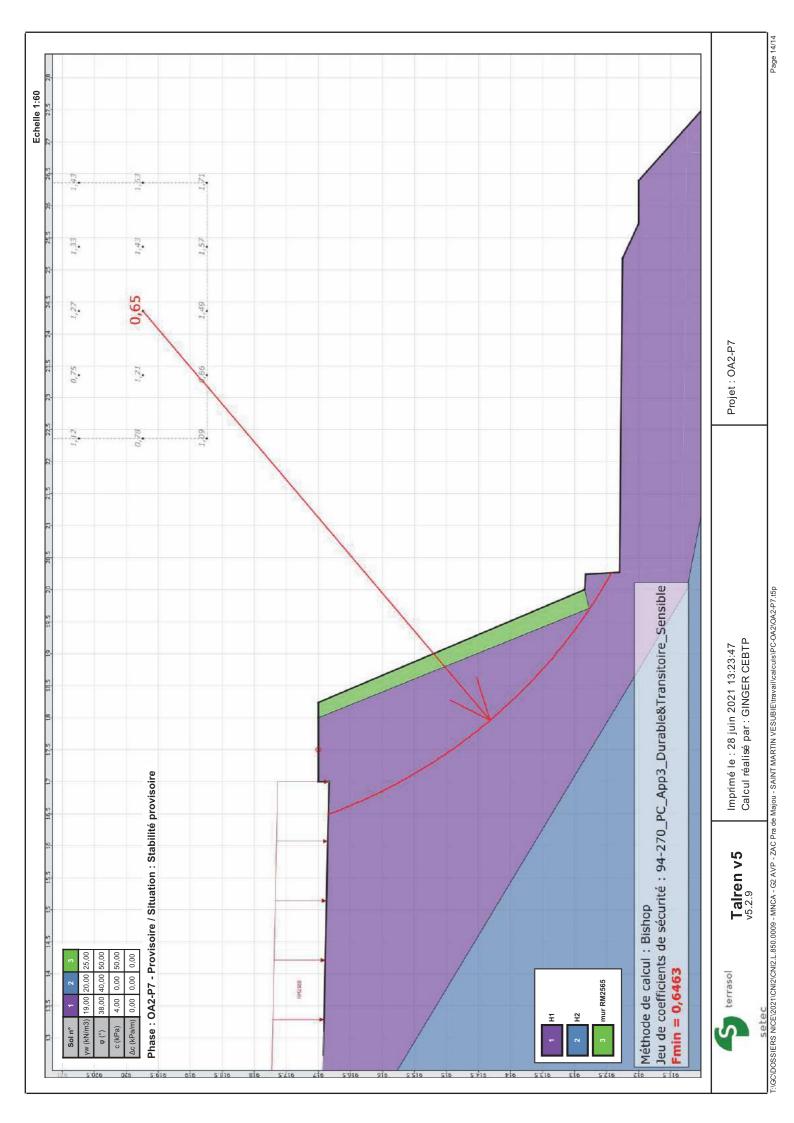
Incrément sur le rayon: 1,000

Nombre d'incréments sur le rayon : 10
Abscisse émergence limite aval : 0,000
Type de recherche : Point de passage imposé
Point de passage imposé : X= 17,500; Y= 917,000

Nombre de tranches : 100 Prise en compte du séisme : Non

Conditions de passage dans certains sols : Passage refusé dans mur RM2565

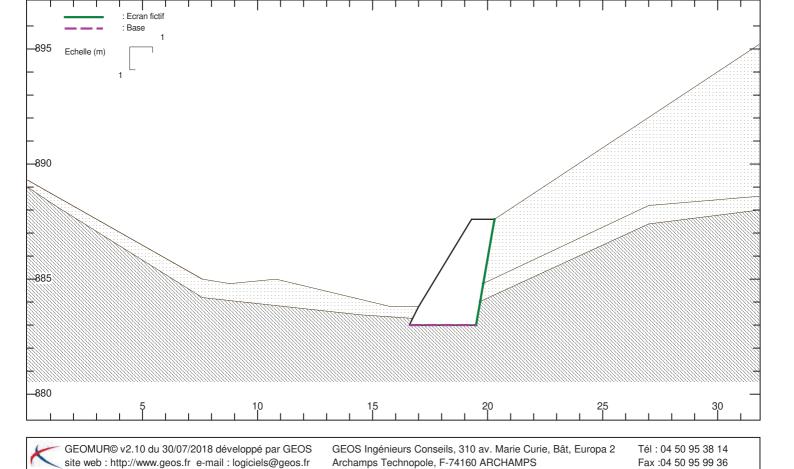
Résultats


Coefficient de sécurité minimal: 0,6463

 $\textbf{Coordonn\'ees du centre critique et rayon du cercle critique: } N^\circ = 71; X0 = 24,36; Y0 = 919,74; R = 8,38$

Talren v5

Imprimé le : 28 juin 2021 13:23:47 Calcul réalisé par : GINGER CEBTP



ANNEXE 9 - NOTES DE CALCULS DES ENROCHEMENTS EN PIED DE L'OA7

- Note de calculs de justification des enrochements (Geomur)
- Note de calculs de justification de la stabilité générale (Talren)

Dossier: CNI2.L.850.0009 Annexes

1200.00

frottant

0.50

-										
ſ	5	SOLS	γ		С	φ	δ	Ca		
		1	19.00		0.00	30.00	20.00	0.00		
L		2	20.00		0.00	40.00	27.00	0.00		
ſ	ı	MUR	γ	BASE	С	ф	q0	qu	Type sol	De

40.00

Fichier : OA7bis-P5.gmr
Unités : kN, m
Méthode de CULMANN
Surfaces brisées précalculées
Xi incliné à delta

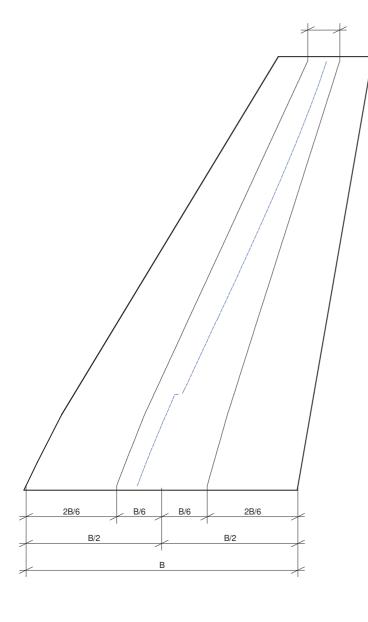
CNI2.L.850.0009_SW29/6/2021 - 9:45	Enrochements OA7	
	P5	1/4

Facteurs de sécurité partiels	Critère	Statique	Sism	ique
l actoure as securite parties	G.1.676	o tatique	Pesant	Allégeant
	Eurocodes 7 : NF P 94-281			
Actions - ELU permanentes défavorables γg = 1.35 variables défavorables γg = 1.5	Approche 2 - ELU			
permanentes favorables $\gamma g = 1$ variables favorables $\gamma q = 0$	Glissement (ELU Article 9.3.1) Poussée défavorable-Poids favorable	Rh;d = 163.94 kN Rp;d = 0 kN Hd = 126.29 kN		
Eau favorable γw;inf = 1 Eau défavorable γw;sup= 1.35	Renversement (ELU Article 9.2.2)	$Hd \le Rh; d + Rp; d$ e = 0.499 m		
Résistances portance (ELU) yR;v = 1.4	Poussée défavorable-Poids favorable	e = 0.499 m e < 7/15 * B = 1.35 m		
portaine (ELD) $\gamma R, v = 1.4$ portaine (ELS) $\gamma R, v = 2.3$ glissement $\gamma R, h = 1.1$ butée $\gamma R, e = 1.4$	Poinçonnement (ELU Article 9.2.1) Poussée défavorable-Poids favorable	R0=29 kN; iδβ=0.122 Rv;d = 198.35 kN Vd = 193.42 kN Vd <= Rv;d + R0		
Methode glissement γR;d;h = 0.9	Approche 2 - ELS			
portance γR;d;v = 1	Renversement (ELS Article 12.3)	e = 0.226 m e < 1/4 * B = 0.725 m		
	Poinçonnement (ELS Article 12.2)	$\begin{array}{l} R0 = 29 \text{ kN; } i\delta\beta = 0.219 \\ Rv; d = 279.74 \text{ kN} \\ Vd = 186.67 \text{ kN} \\ Vd <= Rv; d + R0 \end{array}$		

RESULTATS DE CALCULS INTERMEDIA	AIRES (METHODE CLASSIQUE)	
Statique		
β=0.00 °,d=0.00 m		
Vol. mur = 9.132 m ²		

KS

GEOMUR© v2.10 du 30/07/2018 développé par GEOS site web : http://www.geos.fr e-mail : logiciels@geos.fr


GEOS Ingénieurs Conseils, 310 av. Marie Curie, Bât, Europa 2 Archamps Technopole, F-74160 ARCHAMPS Tél: 04 50 95 38 14 Fax: 04 50 95 99 36

CNI2.L.850.0009_SW29/6/2021 - 9:45	Enrochements OA7	
	P5	2/4

STABILITE INTERNE

mur en maçonnerie :

La résultante doit passer dans le tiers central.

Conditions vérifiées :

Résultante :

Glissement:

en statique -> OUI ; OUI

Légende :

----: statique

GEOMUR© v2.10 du 30/07/2018 développé par GEOS site web : http://www.geos.fr e-mail : logiciels@geos.fr

GEOS Ingénieurs Conseils, 310 av. Marie Curie, Bât, Europa 2 Archamps Technopole, F-74160 ARCHAMPS Tél: 04 50 95 38 14 Fax: 04 50 95 99 36

CNI2.L.850.0009_SW29/6/2021 - 9:45	Enrochements OA7	
	P5	3/4

Données du projet

Numéro d'affaire : CNI2.L.850.0009

Titre du calcul: OA7-P5

Lieu: SAINT MARTIN VESUBIE (06)
Commentaires: Remblai renforcé
Système d'unités: kN, kPa, kN/m3

γw: 10.0 Couches de sol

	Nom	Couleur	γ	φ	С	Δс	qs clous	рl	KsB	Anisotropie	Favorable	Coefficients de sécurité spécifiques
1	Horizon 1		19,0	30,00	0,0	0,0	-	-	-	Non	Non	Non
2	Horizon 2		20,0	40,00	0,0	0,0	-	-	-	Non	Non	Non
3	Remblais projet		20,0	36,00	0,0	0,0	-	-	-	Non	Non	Non
4	Enrochements		18,0	45,00	0,0	0,0	-	-	-	Non	Non	Non
5	soutènement amont		0,0	50,00	50,0	0,0	-	-	-	Non	Non	Non

Couches de sol (cont.)

	Nom	Couleur	Гγ	Гс	Γtan(φ)	Type de cohésion	Courbe
1	Horizon 1		-	-	-	Effective	Linéaire
2	Horizon 2		-	-	-	Effective	Linéaire
3	Remblais projet		-	-	-	Effective	Linéaire
4	Enrochements		-	-	-	Effective	Linéaire
5	soutènement amont		-	-	-	Effective	Linéaire

Points

	Х	Υ		Х	Y		Х	Υ		Х	Υ		Х	Y		Х	Y
1	130,000	888,000	2	98,000	885,000	3	93,500	884,000	4	88,000	880,000	5	86,000	879,500	6	83,500	880,000
7	78,500	878,500	8	75,287	879,589	9	68,265	883,000	10	67,000	883,000	11	66,500	883,500	12	54,000	884,000
13	52,000	884,500	14	49,000	886,500	15	40,000	889,500	16	38,000	890,500	17	30,000	892,500	18	18,000	893,500
19	9,500	895,000	20	0,000	896,183	21	130,000	886,000	22	99,000	884,000	23	94,177	883,000	24	87,227	879,000
25	80,822	878,000	27	67,500	882,500	28	57,720	883,231	29	54,000	883,287	30	39,500	888,000	31	0,000	894,250
33	75,182	882,382	34	54,000	896,500	35	19,287	896,242	36	19,277	897,298	37	0,000	898,000	43	76,190	882,381
44	77,848	877,861	45	77,563	878,637	47	77,684	878,309	48	75,815	877,851	49	75,723	878,511	50	75,586	879,488
51	47,600	896,452	52	19,080	897,305	53	19,100	896,220									

Segments

	Point 1	Point 2																		
1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6	7	8	8	9
9	9	10	10	10	11	11	11	12	12	12	13	13	13	14	14	14	15	15	15	16
16	16	17	17	17	18	18	18	19	19	19	20	20	21	22	21	22	23	22	23	24
23	24	25	26	27	28	27	28	29	28	29	30	29	30	31	33	33	34	35	35	36
47	33	43	48	43	45	49	45	7	56	47	25	57	47	44	58	44	48	59	48	49
61	49	27	62	49	50	64	50	8	65	50	33	66	45	47	67	34	51	68	35	51
69	36	52	70	37	52	71	52	53	72	53	35									

Surcharges réparties

	Nom	X gauche	Y gauche	q gauche	X droite	Y droite	q droite	Ang/horizontale
1	voirie ZAC	47,600	896,452	20,0	54,000	896,500	20,0	90,00

Bandes

	Nom	Х	Υ	Espacement horizontal	Inclinaison/horizontale	Largeur base de diffusion	Angle de diffusion	TR	Longueur	Largeur
1	Bande 1	72,500	884,100	1,000	0,000	1,000	10,00	25,0	5,000	1,000
2	Bande 2	70,200	885,600	1,000	0,000	1,000	10,00	25,0	5,000	1,000
3	Bande 3	67,900	887,100	1,000	0,000	1,000	10,00	25,0	5,000	1,000
4	Bande 4	65,700	888,600	1,000	0,000	1,000	10,00	25,0	5,000	1,000
5	Bande 5	63,400	890,100	1,000	0,000	1,000	10,00	25,0	5,000	1,000
6	Bande 6	61,100	891,600	1,000	0,000	1,000	10,00	25,0	6,000	1,000
7	Bande 7	58,900	893,100	1,000	0,000	1,000	10,00	25,0	6,000	1,000
8	Bande 8	56,600	894,600	1,000	0,000	1,000	10,00	25,0	6,000	1,000
9	Bande 9	54,300	896,100	1,000	0,000	1,000	10,00	25,0	6,000	1,000

Talren v5

Imprimé le : 29 juin 2021 13:48:06 Calcul réalisé par : GINGER CEBTP

Données du projet

	Nom	γremblai	Type de pondération	Traction	μ0*	μ1*
1	Bande 1	20,0	Minorateur (1)	Externe	1,300	0,654
2	Bande 2	20,0	Minorateur (1)	Externe	1,300	0,654
3	Bande 3	20,0	Minorateur (1)	Externe	1,300	0,654
4	Bande 4	20,0	Minorateur (1)	Externe	1,300	0,654
5	Bande 5	20,0	Minorateur (1)	Externe	1,300	0,654
6	Bande 6	20,0	Minorateur (1)	Externe	1,300	0,654
7	Bande 7	20,0	Minorateur (1)	Externe	1,300	0,654
8	Bande 8	20,0	Minorateur (1)	Externe	1,300	0,654
9	Bande 9	20,0	Minorateur (1)	Externe	1,300	0,654

Talren v5 v5.2.9

Imprimé le : 29 juin 2021 13:48:06 Calcul réalisé par : GINGER CEBTP

Données de la phase 1

Nom de la phase : Enrochements

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent
1	1	2	Horizon 1	2	2	3	Horizon 1	3	3	4	Horizon 1
4	4	5	Horizon 1	5	5	6	Horizon 1	6	6	7	Horizon 1
8	8	9	Horizon 1	9	9	10	Horizon 1	10	10	11	Horizon 1
11	11	12	Horizon 1	12	12	13	Horizon 1	13	13	14	Horizon 1
14	14	15	Horizon 1	15	15	16	Horizon 1	16	16	17	Horizon 1
17	17	18	Horizon 1	18	18	19	Horizon 1	19	19	20	Horizon 1
20	21	22	Horizon 2	21	22	23	Horizon 2	22	23	24	Horizon 2
23	24	25	Horizon 2	26	27	28	Horizon 2	27	28	29	Horizon 2
28	29	30	Horizon 2	29	30	31	Horizon 2	33	33	34	Remblais projet
35	35	36	Remblais projet	47	33	43	Enrochements	48	43	45	Enrochements
49	45	7	Horizon 1	56	47	25	Horizon 2	57	47	44	Enrochements
58	44	48	Horizon 2	59	48	49	Horizon 2	61	49	27	Horizon 2
62	49	50	Horizon 1	64	50	8	Horizon 1	65	50	33	Remblais projet
66	45	47	Enrochements	67	34	51	Remblais projet	68	35	51	Remblais projet
69	36	52	Remblais projet	70	37	52	Remblais projet				

Liste des éléments activés

Surcharges réparties : voirie ZAC Conditions hydrauliques : Néant

Talren v5

Imprimé le : 29 juin 2021 13:48:06 Calcul réalisé par : GINGER CEBTP

Nom de la phase : Enrochements Nom de la situation : Stabilité générale

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_Approche 3(A2)_RemblaisRenforcés_Phase durable_PeuSensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,000	Fqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Fqsl,tirant,es	1,000	Fqsl,bande	1,100
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,250	Гbuton	1,000	Гs3	1,100

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 73,500; Y= 902,000
Incrément en X / Incrément en Y : X= 1,000; Y= 1,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

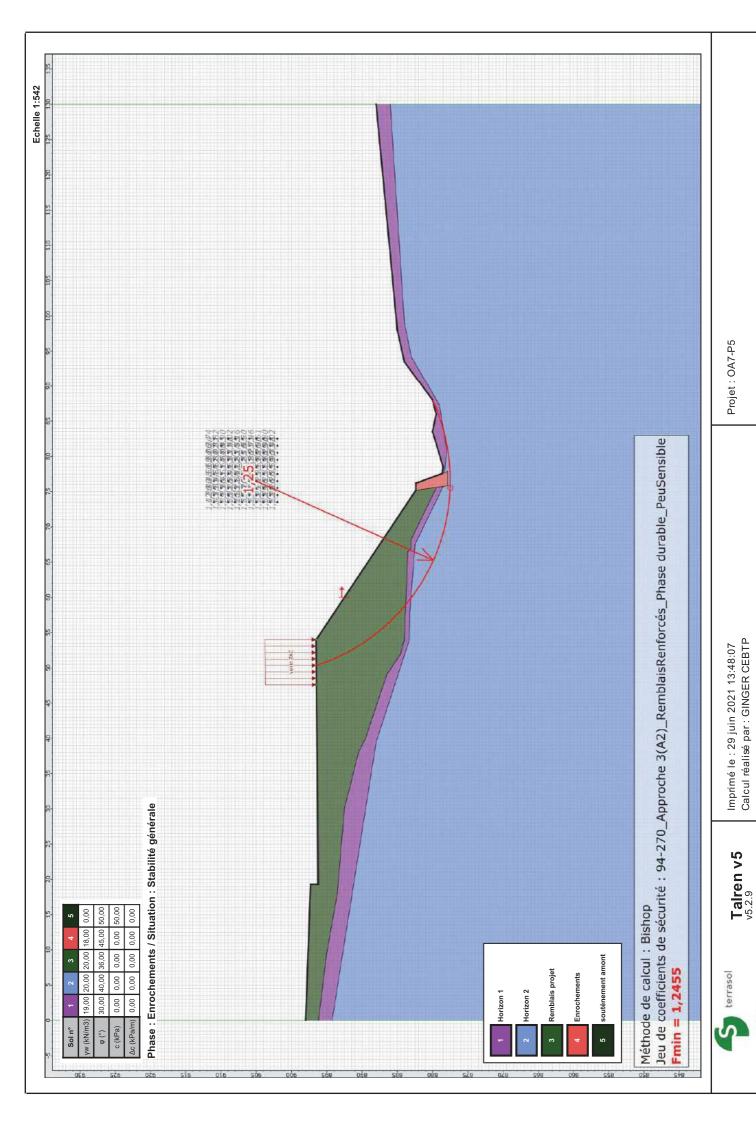
Nombre de centres en X / en Y : en X= 10; en Y= 10

Incrément sur le rayon : 1,000

Nombre d'incréments sur le rayon : 10
Abscisse émergence limite aval : 60,000
Type de recherche : Point de passage imposé
Point de passage imposé : X= 75,500; Y= 877,500

Nombre de tranches : 100 Prise en compte du séisme : Non

Résultats


Coefficient de sécurité minimal: 1,2455

Coordonnées du centre critique et rayon du cercle critique : N°= 331; X0= 76,50; Y0= 905,00; R= 27,51

Talren v5

Imprimé le : 29 juin 2021 13:48:06 Calcul réalisé par : GINGER CEBTP

Setec
T:\GC\DOSSIERS NICE\2021\CNI2\CNI2\CNI2\L.850.0009 - MNCA - G2 AVP - ZAC Pra de Majou - SAINT MARTIN VESUBIE\travail\calculs\RR\OA7-P5\OA7-P5_fest.t5p

Page 5/5

ANNEXE 10 -NOTES DE CALCULS DU REMBLAI RENFORCE OA7

- Note de calculs de justification de la stabilité externe locale
- Remblai renforcé de l'OA7 sur le profil transversal de l'OA7 n°5 (stabilités générale et mixte)

Dossier: CNI2.L.850.0009 Annexes

JUSTIFICATION DE LA STABILITE EXTERNE LOCALE

Sol d'assise	H1					Remblais projet	Hma	12.5	m	épaisseur
	Hmax	2 r	m				Hma	17.2	m	hauteur talus
	γ	19 k	kN/m3				Largeur en base	22.8	m	
	PI	0.5 N	MPa				,	20	kN/m3	
	Em	4 N	Mpa				φ		•	
	α+	0.5							pente amont	
	α-	0.3					;		pente aval ou fruit	
	kp	0.8 p	ortance				δ/φ	2/3	·	
	φ'	30 °	•	0.523598	78		β/φ			
									۰	0.41887902
							ka	0.124	poussée	
							L _{renforcemen}	t 5.5	m	L _{moyenne}
							Surface transversale		m²	
							Encastremen	t 0	m	
Surcharges	voiries	20 k	κN/m²							
							Pondérations	ELS	ELU	
									1.35	
							(1.5	
							Y _R ;	2.3	1.4	
							Y _{R;d} ;	, 1	1	peu sensible aux déformations
							Yr;	h	1.1	
							Y _{R;d} ;	h	0.9	peu sensible aux déformations
							,,			
Efforts appliqués	Poussée	Deserv	348.5	kN/ml		Bras de levier				
Ellorts appliques	Poussee	Pmax	318.4	kN/ml		bi as de leviei	par rapport pied talus (O) 5.7	m		
		Hp Vp	141.7	kN/ml			22.8	m		
		٧þ	141.7	KIN/IIII			22.0	1111		
	Poids propre remblais	Vr	2640.0	kN/ml			11.4	m		
				1.01/			0.5			
	Surcharge	Hs Vs	2.5	kN/ml kN/ml	RM2565		8.6 11.4	m		
		VS	négligée	KIN/IIII	Voirie proje	L	11.4			
	C 5111									
	Sommes ELU	Hd	433.5	kN/ml			M _{déstab}		kN.m/ml	ELU
		Vd	3755.4	kN/ml			M_{stab}	44992.6	kN.m/ml	ELU
							$M_{/0}$	42496.4	kN.m/ml	ELU

Excentricité résultante sur la base du remblai

	M _{/O} /Vd 11.32 excentricité a	m amont:e=	distance rés 0.08	ultante/O m	
Tassements ELS	min		cm		
	max	6.3	cm		
Poinçonnement ELU	Vd	270	kPa		ELS
		367.5	kPa		ELU
	RO	0	kPa		ELS
		0	kPa		ELU
	Rv;d	3965	kPa		ELS
		6514	kPa		ELU
	Vd-R0	270	kPa	OK	ELS
		367.5	kPa	OK	ELU
Glissement ELU	Rh;d Hd Rp;d	54	kN/ml kN/ml négligée	ОК	

Données du projet

Numéro d'affaire : CNI2.L.850.0009

Titre du calcul: OA7-P5

Lieu: SAINT MARTIN VESUBIE (06)
Commentaires: Remblai renforcé
Système d'unités: kN, kPa, kN/m3

γw: 10.0 Couches de sol

	Nom	Couleur	γ	φ	С	Δс	qs clous	рl	KsB	Anisotropie	Favorable	Coefficients de sécurité spécifiques
1	Horizon 1		19,0	36,00	0,0	0,0	-	-	-	Non	Non	Non
2	Horizon 2		20,0	40,00	0,0	0,0	-	-	-	Non	Non	Non
3	Remblais projet		20,0	36,00	0,0	0,0	-	-	-	Non	Non	Non
4	Enrochements		18,0	45,00	0,0	0,0	-	-	-	Non	Non	Non
5	soutènement amont		0,0	50,00	50,0	0,0	-	-	-	Non	Non	Non

Couches de sol (cont.)

	Nom	Couleur	Γγ	Гс	Γtan(φ)	Type de cohésion	Courbe
1	Horizon 1		-	-	-	Effective	Linéaire
2	Horizon 2		-	-	-	Effective	Linéaire
3	Remblais projet		-	-	-	Effective	Linéaire
4	Enrochements		-	-	-	Effective	Linéaire
5	soutènement amont		-	-	-	Effective	Linéaire

Points

	Х	Υ		Х	Υ		Х	Υ		Х	Υ		Х	Y		Х	Υ
1	130,000	888,000	2	98,000	885,000	3	93,500	884,000	4	88,000	880,000	5	86,000	879,500	6	83,500	880,000
7	78,500	878,500	8	75,287	879,589	9	68,265	883,000	10	67,000	883,000	11	66,500	883,500	12	54,000	884,000
13	52,000	884,500	14	49,000	886,500	15	40,000	889,500	16	38,000	890,500	17	30,000	892,500	18	18,000	893,500
19	9,500	895,000	20	0,000	896,183	21	130,000	886,000	22	99,000	884,000	23	94,177	883,000	24	87,227	879,000
25	80,822	878,000	27	67,500	882,500	28	57,720	883,231	29	54,000	883,287	30	39,500	888,000	31	0,000	894,250
33	75,182	882,382	34	54,000	896,500	35	19,287	896,242	36	19,277	897,298	37	0,000	898,000	43	76,190	882,381
44	77,848	877,861	45	77,563	878,637	47	77,684	878,309	48	75,815	877,851	49	75,723	878,511	50	75,586	879,488
51	47,600	896,452	52	19,080	897,305	53	19,100	896,220									

Segments

	Point 1	Point 2																		
1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6	7	8	8	9
9	9	10	10	10	11	11	11	12	12	12	13	13	13	14	14	14	15	15	15	16
16	16	17	17	17	18	18	18	19	19	19	20	20	21	22	21	22	23	22	23	24
23	24	25	26	27	28	27	28	29	28	29	30	29	30	31	33	33	34	35	35	36
47	33	43	48	43	45	49	45	7	56	47	25	57	47	44	58	44	48	59	48	49
61	49	27	62	49	50	64	50	8	65	50	33	66	45	47	67	34	51	68	35	51
69	36	52	70	37	52	71	52	53	72	53	35	73	50	45						

Surcharges réparties

	Nom	X gauche	Y gauche	q gauche	X droite	Y droite	q droite	Ang/horizontale
1	voirie ZAC	47,600	896,452	20,0	54,000	896,500	20,0	90,00

Bandes

	Nom	Х	Υ	Espacement horizontal	Inclinaison/horizontale	Largeur base de diffusion	Angle de diffusion	TR	Longueur	Largeur
1	Bande 1	72,500	884,100	1,000	0,000	1,000	10,00	25,0	5,000	1,000
2	Bande 2	70,200	885,600	1,000	0,000	1,000	10,00	25,0	5,000	1,000
3	Bande 3	67,900	887,100	1,000	0,000	1,000	10,00	25,0	5,000	1,000
4	Bande 4	65,700	888,600	1,000	0,000	1,000	10,00	25,0	5,000	1,000
5	Bande 5	63,400	890,100	1,000	0,000	1,000	10,00	25,0	5,000	1,000
6	Bande 6	61,100	891,600	1,000	0,000	1,000	10,00	25,0	6,000	1,000
7	Bande 7	58,900	893,100	1,000	0,000	1,000	10,00	25,0	6,000	1,000
8	Bande 8	56,600	894,600	1,000	0,000	1,000	10,00	25,0	6,000	1,000
9	Bande 9	54,300	896,100	1,000	0,000	1,000	10,00	25,0	6,000	1,000

Talren v5

Imprimé le : 29 juin 2021 13:41:34 Calcul réalisé par : GINGER CEBTP

Données du projet

	Nom	γremblai	Type de pondération	Traction	μ0*	μ1*
1	Bande 1	20,0	Minorateur (1)	Externe	1,300	0,654
2	Bande 2	20,0	Minorateur (1)	Externe	1,300	0,654
3	Bande 3	20,0	Minorateur (1)	Externe	1,300	0,654
4	Bande 4	20,0	Minorateur (1)	Externe	1,300	0,654
5	Bande 5	20,0	Minorateur (1)	Externe	1,300	0,654
6	Bande 6	20,0	Minorateur (1)	Externe	1,300	0,654
7	Bande 7	20,0	Minorateur (1)	Externe	1,300	0,654
8	Bande 8	20,0	Minorateur (1)	Externe	1,300	0,654
9	Bande 9	20,0	Minorateur (1)	Externe	1,300	0,654

Talren v5 v5.2.9

Imprimé le : 29 juin 2021 13:41:35 Calcul réalisé par : GINGER CEBTP

Données de la phase 2

Nom de la phase : Remblais renforcés

Détermination de l'enveloppe du talus : automatique

Segments de la phase

	Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent		Point 1	Point 2	Sol sous-jacent	
1	1	2	Horizon 1	2	2	3	Horizon 1	3	3	4	Horizon 1	
4	4	5	Horizon 1	5	5	6	Horizon 1	6	6	7	Horizon 1	
8	8	9	Horizon 1	9	9	10	Horizon 1	10	10	11	Horizon 1	
11	11	12	Horizon 1	12	12	13	Horizon 1	13	13	14	Horizon 1	
14	14	15	Horizon 1	15	15	16	Horizon 1	16	16	17	Horizon 1	
17	17	18	Horizon 1	18	18	19	Horizon 1	19	19	20	Horizon 1	
20	21	22	Horizon 2	21	22	23	Horizon 2	22	23	24	Horizon 2	
23	24	25	Horizon 2	26	27	28	Horizon 2	27	28	29	Horizon 2	
28	29	30	Horizon 2	29	30	31	Horizon 2	33	33	34	Remblais projet	
35	35	36	soutènement amont	47	33	43	Enrochements	48	43	45	Enrochements	
49	45	7	Horizon 1	56	47	25	Horizon 2	57	47	44	Enrochements	
58	44	48	Horizon 2	59	48	49	Horizon 2	61	49	27	Horizon 2	
62	49	50	Horizon 1	64	50	8	Horizon 1	65	50	33	Remblais projet	
66	45	47	Enrochements	67	34	51	Remblais projet	68	35	51	Remblais projet	
69	36	52	soutènement amont	70	37	52	Remblais projet	71	52	53	Remblais projet	
72	53	35	Remblais projet									

Liste des éléments activés

Surcharges réparties : voirie ZAC

Bandes: Bande 1

Bande 2

Bande 3

Bande 4

Bande 5

Bande 6

Bande 7 Bande 8

Bande 9

Conditions hydrauliques: Néant

Talren v5

Imprimé le : 29 juin 2021 13:41:35 Calcul réalisé par : GINGER CEBTP

Nom de la phase : Remblais renforcés Nom de la situation : Stabilité mixte

Méthode de calcul : Bishop

Jeu de coefficients de sécurité pour cette situation : 94-270_Approche 3(A2)_RemblaisRenforcés_Phase durable_PeuSensible

Détail du jeu de coefficients de sécurité

Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient	Nom	Coefficient
Γmin	1,000	Гs1	1,000	Γ's1	1,000	Γφ	1,250	Гс'	1,250	Гси	1,400
ΓQ	1,300	Γqsl,clou,ab	1,000	Fqsl,clou,es	1,000	Γqsl,tirant,ab	1,000	Γqsl,tirant,es	1,000	Γqsl,bande	1,100
ГрІ	1,400	Га,clou	1,000	Γa,tirant	1,000	Га,bande	1,250	Гbuton	1,000	Гs3	1,100

Type de surface de rupture : Circulaire manuelle
Origine du quadrillage manuel : X= 81,000; Y= 926,000
Incrément en X / Incrément en Y : X= 2,000; Y= 2,000

Angle du maillage par rapport à : l'horizontale= 0,00; la verticale= 0,00

Nombre de centres en X / en Y : en X= 10; en Y= 10

Incrément sur le rayon : 1,000

Nombre d'incréments sur le rayon : 5

Abscisse émergence limite aval : 0,000

Type de recherche : Point de passage imposé

Point de passage imposé : X= 62,684; Y= 890,000

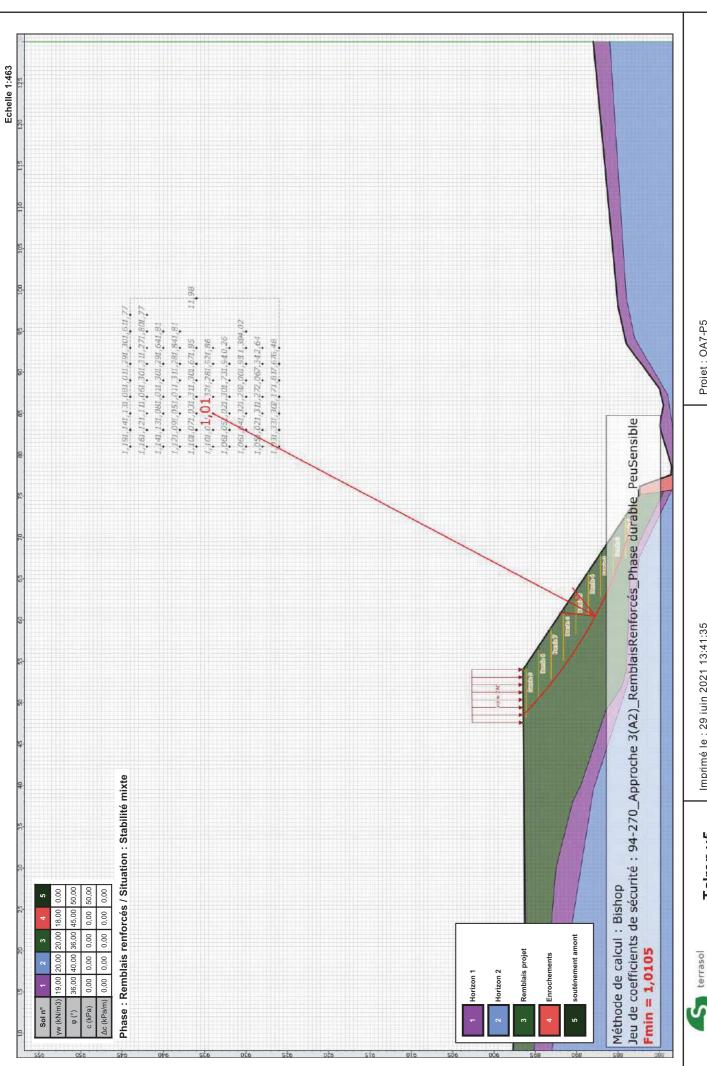
Nombre de tranches : 100 Prise en compte du séisme : Non

Conditions de passage dans certains sols : Passage refusé dans Enrochements

et

Passage refusé dans soutènement amont

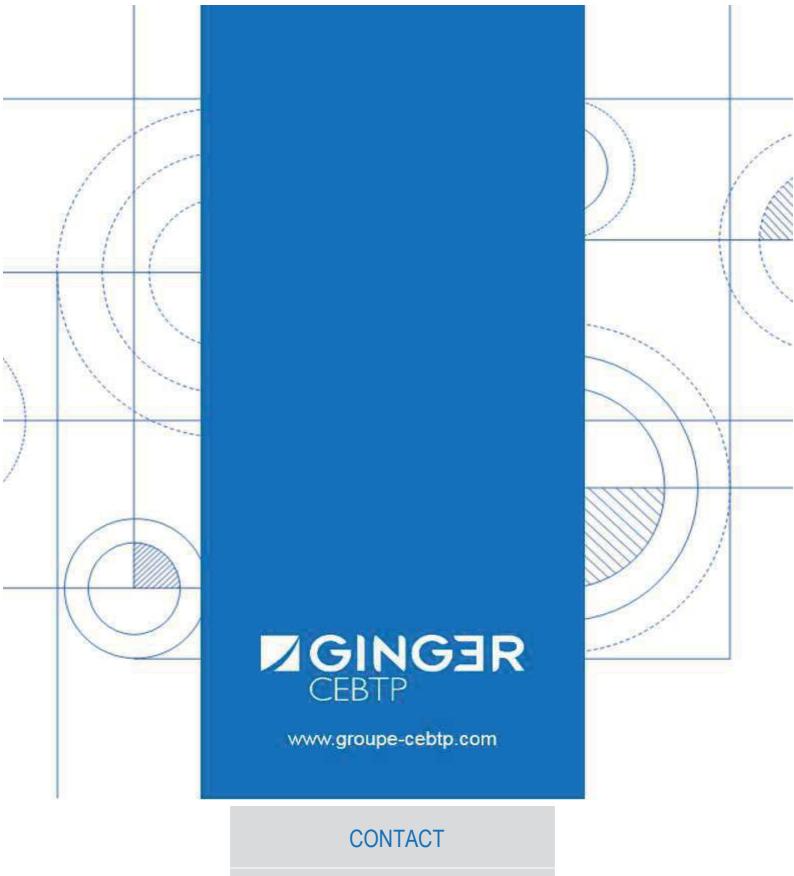
Résultats


Coefficient de sécurité minimal : 1,0105

Coordonnées du centre critique et rayon du cercle critique : N°= 160; X0= 85,00; Y0= 934,00; R= 52,33

Talren v5

Imprimé le : 29 juin 2021 13:41:35 Calcul réalisé par : GINGER CEBTP


Setec
T:GCIDOSSIERS NICE/2021/CNI2/L.850.0009 - MNCA - G2 AVP - ZAC Pra de Majou - SAINT MARTIN VESUBIE\travail\calculs\travai

Imprimé le : 29 juin 2021 13:41:35 Calcul réalisé par : GINGER CEBTP

Tairen v5 v5.2.9

Projet: 0A7-P5

Page 5/5

Agence de Nice

Le Broc Center – 1ère Avenue 5600 mètres 06510 CARROS LE BROC

> Tél.: +33 (0) 4 92 29 37 10 Fax.: +33 (0) 4 92 29 37 29

www.groupe-cebtp.com

RECEPISSE DE DEPOT DE LA DEMANDE D'AUTORISATION DE DEFRICHEMENT

De: Defrichement - DDTM 06/SEAFEN emis par DUVERGER Nadine (Chargé de mission) - DDTM 06/SEAFEN/PFEN ddtm-defrichement@alpes-maritimes.gouv.fr

Envoyé: jeudi 13 janvier 2022 14:14

À: mairie@saintmartinvesubie.fr

Objet: AR demande par voie électronique - Défrichement SAINT MARTIN VESUBIE E599, 699 / COMMUNE

Bonjour,

Nous avons bien reçu le 13/01/2022 votre demande visée en objet envoyée par voie électronique.

Nous allons procéder à son examen prochainement et vous informerons de sa bonne complétude ou d'éventuelles pièces à produire/corriger.

Pour la mission défrichement,

Cordialement,

Nadine DUVERGER

Services de l'État dans les Alpes-Maritimes Direction Départementale des Territoires et de la Mer

Service Eau, Agriculture, Forêt et Espaces Naturels

Pôle Forêt Espaces Naturels

CADAM - 147, Boulevard du Mercantour

06286 NICE CEDEX 3

Tél: 04 93 72 74 42

Mail: ddtm-defrichement@alpes-maritimes.gouv.fr

Retrouvez de nombreuses informations sur notre site Internet (délais, guide pour compléter le dossier...): http://www.alpes-maritimes.gouv.fr/Politiques-publiques/Agriculture-fo