

PRÉFET DU VAR

Direction Départementale des Territoires et de la Mer du Var

SCCV LA FARLEDE FORCE 5 ZI LA GARDE LA BASTIDE VERTE 1041 AVENUE DE DRAGUIGNAN BP 30022 83087 TOULON Cedex 9

Service de l'Eau et des Milieux Aquatiques du Var

Dossier suivi par :
Julien ASSANTE

Mèl: julien.assante@var.gouv.fr

Tél.: 04 94 46 81 32 Fax: 04 94 46 82 09

Objet : dossier de déclaration instruit au titre des articles L. 214-1 à L. 214-6 du code de l'environnement : Pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 » - rue

Dr Calmette- quartier Grande Tourrache sur la commune de La Farlède

Accord sur dossier de déclaration Copie à : Agence Française de la Biodiversité

Mairie de la Farlède – Place de la Liberté – 83210 La Farlède Eau et perspectives – 540 Chemin de la Plaine – 06250 MOUGINS

Réf.:83-2018-00107 (D 1715)

TOULON, le 26 Juillet 2018

Monsieur.

Dans le cadre de l'instruction de votre dossier de déclaration au titre des articles L. 214-1 à L. 214-6 du code de l'environnement concernant l'opération :

Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 » rue du Docteur Calmette - quartier de la Grande Tourrache sur la commune de La Farlède

pour lequel un récépissé vous a été délivré, au titre de la complétude, en date du 14 Juin 2018, j'ai l'honneur de vous informer que je ne compte pas faire opposition à votre déclaration. Dès lors, vous pouvez entreprendre cette opération à compter de la réception de ce courrier.

Le présent courrier ne vous dispense en aucun cas de faire les déclarations ou d'obtenir les autorisations requises par d'autres réglementations

Copies du récépissé et de ce courrier sont également adressées à la mairie de la commune de La Farlède pour affichage pendant une durée minimale d'un mois pour information. Ces deux documents seront mis à la disposition du public sur le site internet de la préfecture du Var durant une période d'au moins six mois.

La mise en service de l'installation, la construction des ouvrages, l'exécution des travaux, et l'exercice de l'activité, objets de votre déclaration, doivent intervenir dans un délai de trois ans à compter de la date du présent récépissé.

A défaut, en application de l'article R. 214-51 du code de l'environnement, sauf cas de force majeure ou demande justifiée et acceptée de prorogation de délai, votre déclaration sera caduque.

En cas de demande de prorogation de délai, celle-ci sera adressée au préfet, dûment justifiée, au plus tard deux mois avant l'échéance ci-dessus.

Cette décision sera susceptible de recours contentieux devant le tribunal administratif de Toulon, conformément à l'article R. 514-3-1 du code de l'environnement :

- 1° Par les tiers intéressés en raison des inconvénients ou des dangers que le fonctionnement de l'installation présente pour les intérêts mentionnés aux articles <u>L. 211-1</u> et <u>L. 511-1</u> dans un délai de quatre mois à compter du premier jour de la publication ou de l'affichage de ces décisions ;
- 2° Par les demandeurs ou exploitants, dans un délai de deux mois à compter de la date à laquelle la décision leur a été notifiée.

Les décisions mentionnées au premier alinéa peuvent faire l'objet d'un recours gracieux ou hiérarchique dans le délai de deux mois. Ce recours administratif prolonge de deux mois les délais mentionnés aux 1° et 2°.

Le service de police de l'eau et l'Agence Française pour la Biodiversité devront être avertis de la date de début des travaux ainsi que de la date d'achèvement des ouvrages et, le cas échéant, de la date de mise en service.

Je vous prie d'agréer, Monsieur, l'expression de mes salutations distinguées.

Pour le Préfet et par délégation, Pour le Directeur départemental des territoires et de la mer, La Chef du service de l'eau et des milieux aquatiques,

Chantal REYNAUD

Les informations recueillies font l'objet d'un traitement informatique destiné à l'instruction de votre dossier par les agents chargés de la police de l'eau en application du code de l'environnement. Conformément à la loi « informatique et liberté » du 6 janvier 1978, vous bénéficiez d'un droit d'accès et de rectification des informations qui vous concernent. Si vous désirez exercer ce droit et obtenir une communication des informations vous concernant, veuillez adresser un courrier au guichet unique de police de l'eau où vous avez déposé votre dossier.

SCCV LA FARLEDE FORCE 5

Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 » à La Farlède

DECLARATION D'UNE OPERATION EN APPLICATION DES ARTICLES L.214-1 A L.214-6 DU CODE DE L'ENVIRONNEMENT

LIEU:

LA FARLEDE Rue du Docteur Calmette

eau & perspectives géologie hydrogéologie hydrologie hydraulique

DOSSIER N°295/17

Indice	Date d'édition	Etude et Rédaction	Vérification
a	14 février 2018	L. MATHIEU	P. CHAMPAGNE

PROJET: Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Déclaration d'une opération en application des articles L.214-1 à L214-6 du code de l'environnement

RESUME NON TECHNIQUE

Le projet porté par la SCCV LA FARLEDE FORCE 5, Rue du Docteur Calmette à La Farlède prévoit la création d'un pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 » comprenant un bâtiment d'activités sportives, un centre d'affaires, une résidence de services ainsi que des places de stationnements.

Le terrain est situé à proximité de la Zone Industrielle de Toulon-Est, d'établissements scolaires et de quelques habitations individuelles.

Le site est actuellement occupé par deux terrains sportifs et par une zone de stationnements.

Les nouvelles imperméabilisations amenées par le projet vont générer des débits ruisselés supplémentaires à l'état projeté par rapport à un état actuel vers le vallon situé au Sud du terrain du projet.

Un bassin écrêteur de débits pluviaux a été dimensionné en tenant compte des prescriptions des services de la DDTM 83 et de la commune afin de répondre aux orientations du SDAGE Rhône Méditerranée 2016-2021.

La régulation des débits pluviaux issus des futurs aménagements permettra de ramener ces débits à une valeur avant aménagements pour des précipitations jusqu'à une occurrence centennale et donc de participer à la réduction des risques d'inondation à l'aval. Une décante et une cloison siphoïde équiperont le bassin de rétention afin de traiter la pollution chronique issue du lessivage des voies et parkings à l'intérieur du projet.

Enfin, plusieurs dispositions permettant de limiter les risques de pollution pendant la phase travaux seront adoptées.

I – DEMANDEUR

Nom du demandeur : SCCV LA FARLEDE FORCE 5

N° SIRET: 834 118 960 000 14

Adresse:

1041 AVENUE DE DRAGUIGNAN ZI LA GARDE LA BASTIDE VERTE BP 30022

83 097 TOULON CEDEX 9

Responsable:

SMART STRATEGY Représentée par Mr BAADACHE

Mail: contact@smartstrategygroup.net salah@smartstrategygroup.net

Tel.: 04 83 99 46 49

II – EMPLACEMENT SUR LEQUEL L'INSTALLATION, L'OUVRAGE, LES TRAVAUX OU L'ACTIVITE DOIVENT ETRE REALISES

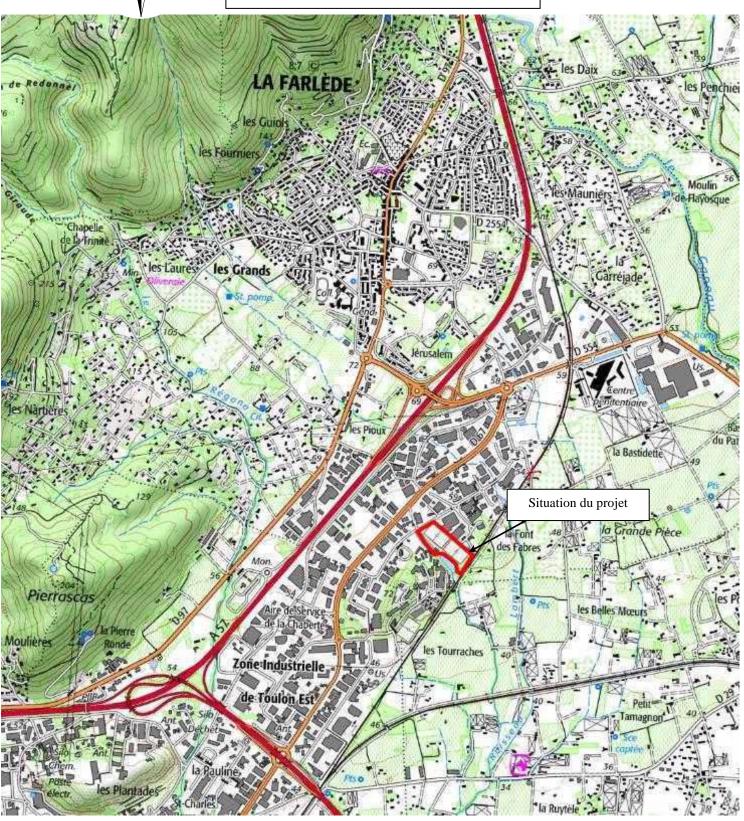

Commune de situation	<u>ı_</u> :
	LA FARLEDE
Nom du projet :	
	LA FARLEDE FORCE 5
Adresse du projet :	
	Rue du Docteur Calmette
<u>Cadastre</u> :	
	Section AW, parcelle N° 52
Emprise cadastrale :	
	28.993 m ²
Zonage au PLU:	
	UE
Milieu naturel concern	<u>né</u> :
	Terrains sportifs enherbés et en terre

Figure A: POSITION DU PROJET

Echelle: 1/25.000

DIRECTION GÉNÉRALE DES FINANCES PUBLIQUES

EXTRAIT DU PLAN CADASTRAL

Département : VAR

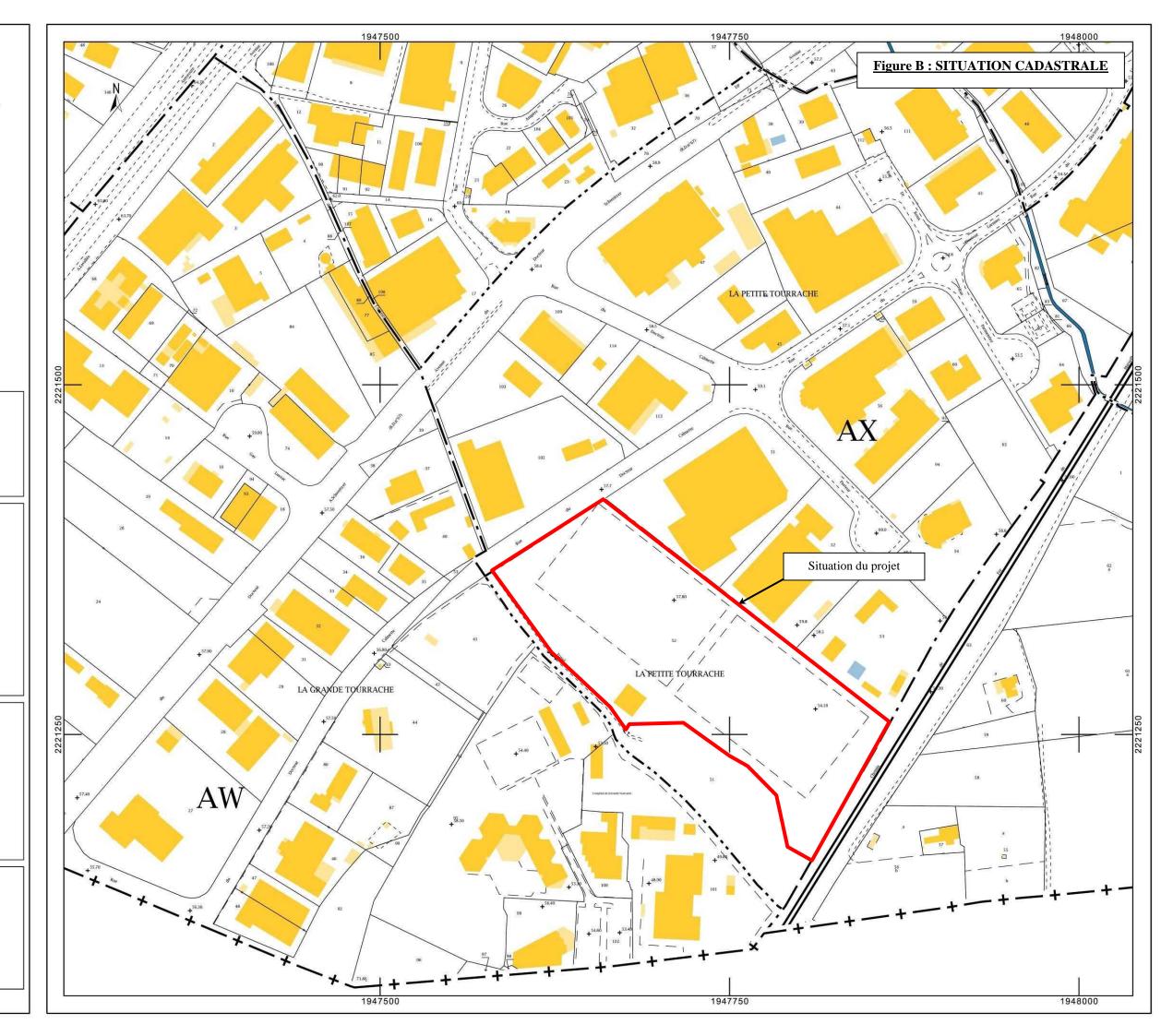
Commune : LA FARLEDE

Section : AW Feuille : 000 AW 01

Échelle d'origine : 1/1000 Échelle d'édition : 1/2500

Date d'édition : 02/01/2018 (fuseau horaire de Paris)

Coordonnées en projection : RGF93CC43


Le plan visualisé sur cet extrait est géré par le centre des impôts foncier suivant :

TOULON

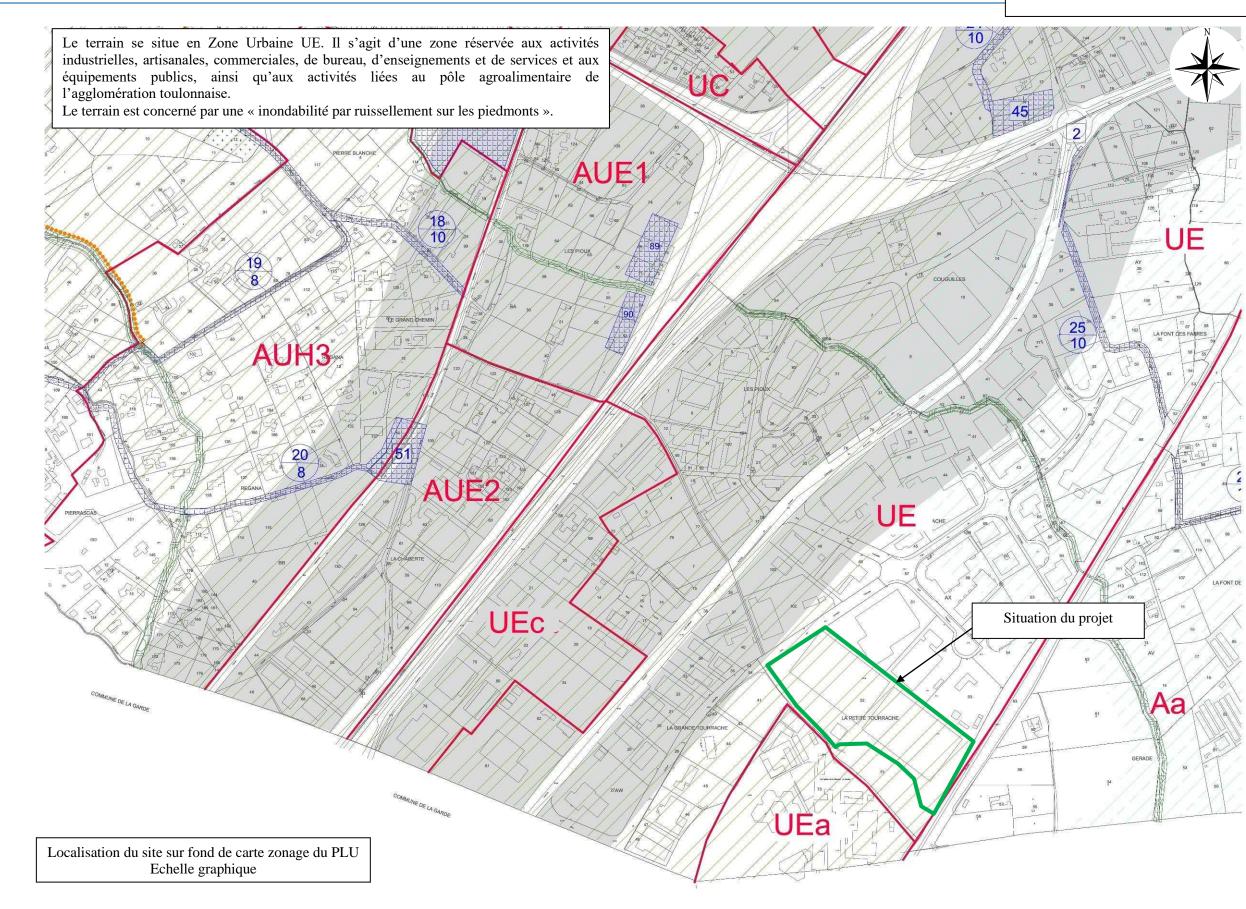
171 Avenue de Vert Coteau CS 20127 83071 83071 TOULON CEDEX tél. 04 94 03 95 01 -fax cdif.toulon@dgfip.finances.gouv.fr

Cet extrait de plan vous est délivré par :

cadastre.gouv.fr ©2017 Ministère de l'Action et des Comptes publics

Emplacement réservés pour équipements publics et d'intérêt général

Emplacement réservé pou cheminement piéton et


LEGENDE

L.151-19 du code de

LEGENDE DES RISQUES

Atlas des zones inondables

Lit majeur ordinaire

PROJET: Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Déclaration d'une opération en application des articles L.214-1 à L214-6 du code de l'environnement

III – NATURE, CONSISTANCE, VOLUME ET OBJET DE L'OUVRAGE, DE L'INSTALLATION, DES TRAVAUX OU DE L'ACTIVITE ENVISAGES – RUBRIQUES DE LA NOMENCLATURE

Nature:

La SCCV LA FARLEDE FORCE 5 prévoit la création d'un pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 », dans le quartier de La Grande Tourrache, au sud de la commune de La Farlède, dans le département du Var.

Consistance:

Le projet prévoit la création d'un bâtiment à vocation sportive, un centre d'affaires, une résidence de services ainsi que des places de stationnements en sous-sol et en extérieur.

Les eaux pluviales du projet seront régulées au travers d'un bassin de rétention enterré, qui sera équipé d'une cloison siphoïde afin d'assurer un traitement de la pollution chronique issue des zones circulées du projet.

Le terrain du projet est situé en hauteur par rapport à un vallon urbain et à un bassin de rétention communal et n'est pas situé dans un lit majeur de cours d'eau.

Volume et objet de l'ouvrage, de l'installation, des travaux ou de l'activité envisagés :

- Superficie de la propriété : 29.050 m²
- Superficie collectée et régulée dans le bassin écrêteur : 27.360 m² (BV Collecté).
- Création d'un bassin de rétention des eaux pluviales dimensionné face à une pluie de période de retour T=100 ans : Volume total de rétention : 2.981 m^3 .

Rubrique (s) de la nomenclature :

2.1.5.0. : Rejet d'eaux pluviales dans les eaux douces superficielles ou sur le sol ou dans le sous-sol, la surface totale du projet, augmentée de la surface correspondant à la partie du bassin naturel dont les écoulements sont interceptés par le projet, étant :

Supérieure à 1 ha, mais inférieure à 20 ha : **Déclaration**.

PROJET : Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Déclaration d'une opération en application des articles L.214-1 à L214-6 du code de l'environnement

SIGNATURE DU PETITIONNAIRE

Fait à , le

Le pétitionnaire :

DEMANDEUR: SCCV LA FARLEDE FORCE 5

PROJET : Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Notice d'incidences

IV. NOTICE D'INCIDENCES

eau & perspectives

DOSSIER N°295/17

géologie hydrogéologie hydrologie hydraulique

Indice	Date d'édition	Etude et Rédaction	Vérification
a	14 Février 2018	L. MATHIEU	P. CHAMPAGNE

SOMMAIRE

TEXTE:

1.		AVANT PROPOS	3
2.		ETAT ACTUEL	3
	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8.	SITUATION GEOGRAPHIQUE CONTEXTE GEOLOGIQUE ET HYDROGEOLOGIQUE HYDROCLIMATOLOGIE CONTEXTE HYDROLOGIQUE - CARACTERISTIQUES DES BASSINS VERSANTS A L'ETAT ACTUEL CONTEXTE HYDRAULIQUE ACTUEL PPRI— AZI — PGRI - TRI VERIFICATION DE L'ABSENCE DE SITE POLLUE SUR LA BASE DE DONNEES DU SITE BASIAS CONTEXTE ENVIRONNEMENTAL.	7 13 19 28
3.		ETAT PROJETE - DESCRIPTION DU PROJET	34
4.		IMPACTS DES AMENAGEMENTS PROJETES	34
	4.1. 4.2. 4.3. 4.4.	IMPACTS QUANTITATIFS - HYDROLOGIE DU BASSIN VERSANT A L'ETAT PROJETE IMPACTS QUANTITATIFS – EAUX SOUTERRAINES IMPACTS QUALITATIFS – EAUX DE VOIRIES ET EAUX USEES IMPACT ENVIRONNEMENTAL	36 36
5.		MESURES COMPENSATOIRES – BASSIN ECRETEUR	37
	5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8.	REGLES RETENUES POUR LE DIMENSIONNEMENT DES BASSINS ECRETEURS DU PROJET TYPE ET EMPLACEMENT DU BASSIN ECRETEUR RET _{BV COLLECTE} AJUTAGES DE REGULATION DES DEBITS DIMENSIONNEMENT HYDRAULIQUE DE LA SURVERSE DE SECURITE REGARDS DE VISITE ET ACCESSIBILITE ETANCHEITE ET CONCEPTION SYNTHESE DES INCIDENCES SUR LES DEBITS PLUVIAUX TRAITEMENT DE LA POLLUTION CHRONIQUE	38 40 46 46
6.		MODALITES DE COLLECTE ET DE REJET DES RUISSELLEMENTS	47
	6.1. 6.2.	COLLECTE DES RUISSELLEMENTS JUSQU'AU BASSIN ECRETEUR	47 48
7.		COLLECTE ET DETOURNEMENT DES EAUX PROVENANT DU BASSIN VERSANT AMONT	
8.		MESURE D'ACCOMPAGNEMENT EN PHASE TRAVAUX	49
9.		SUIVI ET ENTRETIEN DES OUVRAGES	50
10		INCIDENCES DU PROJET ET COMPATIBILITE AVEC LE S.D.A.G.E	51
11	•	DISPOSITIONS REGLEMENTAIRES	53
		CONTRIBUTION DU PROJET A LA REALISATION, DES OBJECTIFS VISES A L'ARTICLE L211-1 DU CODE DE L'ENVIRONNEMENT	53
		T THE LET CONVIRTINISHMENT	7/4

FIGURES:

Figure 1 : Situation géographique	4
Figure 2 : Situation géographique sur photo aérienne	
Figure 3 : Contexte géologique	
Figure 4 : Carte de sensibilité des terrains aux remontées de nappe.	
Figure 5 : Plan d'implantation des reconnaissances géotechniques	
Figure 6 : Coupe du sondage CR1	
Figure 7 : Découpe des bassins versants étudiés à l'état actuel	
Figure 8 : Aménagements hydrauliques actuels	
Figure 9 : Plan de Prévention des Risques Inondations	
Figure 10: Atlas des Zones Inondables	
Figure 11 : Carte des Territoires à Risque Inondation (TRI)	
Figure 12 : Contexte environnemental.	
Figure 13: Découpe du bassin versant BV Collecté	
Figure 14 : Position de principe du bassin RET BV Collecté	
Figure 15 : Vue en plan du bassin écrêteur du projet	
Figure 16 : Coupe du bassin écrêteur du projet	
Figure 17 : Coupe du bassifi écréteur du projet	
Figure 17: Coupe du fosse enneroe pour une surverse chiq-centennaie	43
TABLEAUX:	
Tableau 1 : Données pluviographiques (Station de HYERES) pour la période 1977-2014. Hauteurs	
intenses et hauteurs totales associées.	12
Tableau 2 : Coefficients de Montana pour des pluies de durées 6 à 60 minutes (HYERES pour la	
période 1977-2014)	
Tableau 3 : Répartition des superficies des bassins versants à l'état actuel	13
Tableau 4 : Tableau des coefficients de ruissellements prescrits (Extrait – MISEN 83 – Janvier	
2014)	14
Tableau 5 : Coefficient de ruissellement centennal des bassins versants étudiés	15
Tableau 6 : Temps de concentration décennal des bassins versants	16
Tableau 7 : Caractéristiques et débits de pointe des bassins versants étudiés à l'état actuel	17
Tableau 8 : Loi hauteur / volume / débit du bassin de rétention communal avec un débit régulé	25
Tableau 9 : Loi hauteur / volume / débit du bassin de rétention communal avec un débit surversant	26
Tableau 10 : Simulations de fonctionnement du bassin de rétention de la Zone Industrielle. Débits	
actuels de période de retour T = 100 ans	26
Tableau 11 : Capacité de l'exutoire E1 : Arche en blocs bétonnés.	27
Tableau 12 : Caractéristiques et débits de pointe du bassin versant BV Collecté	
Tableau 13 : Loi hauteur / volume / débit du bassin écrêteur du projet	
Tableau 14 : Simulations de fonctionnement du bassin écrêteur du projet. Débits futurs de période	
de retour T = 100 ans	39
Tableau 15 : Caractéristiques de la surverse de sécurité du bassin écrêteur.	
Tableau 16 : Comparaison des débits actuels et futurs issus des terrains aménagés du projet	
Tableau 17: Superficie de décantation à prévoir pour le bassin écrêteur.	
<u>ANNEXES</u> :	
Annexe I : Formulaire d'évaluation simplifiée des incidences Natura 2000	
Annexe II : Engagement écrit concernant les modalités d'entretien	
Annexe III : Fiche synthétique	
Annexe IV : Carte des périmètres de protection d'AEP	
Annexe V : Autorisation de rejet des eaux pluviales	

Autorisation de raccordement au réseau EU communal

1. AVANT PROPOS

Dans le cadre de la création d'un pôle d'excellence médico-sportif, sur la commune de LA FARLEDE, la société SCCV LA FARLEDE FORCE 5 a missionné la société EAU ET PERSPECTIVES afin que nous réalisions les études hydrologiques et hydrauliques à intégrer dans un dossier de procédure au titre de la Loi sur l'Eau en référence à la rubrique 2.1.5.0. du tableau de l'article R.214-1 du Code de l'Environnement.

L'architecte du projet est le Cabinet FLEX ARCHITECTES à Hyères.

2. ETAT ACTUEL

2.1. SITUATION GEOGRAPHIQUE

Le terrain du projet est situé Rue du Docteur Calmette, dans le quartier de La Grande Tourrache, sur la commune de LA FARLEDE (voir les figures 1 et 2).

Le terrain est situé dans la Zone Industrielle de Toulon-Est et au Sud du centre-ville de la commune. Le terrain est actuellement occupé par deux stades et des stationnements. Il est limité au Sud-Est par les voies ferrées de la ligne Toulon – Nice.

La parcelle concernée est cadastrée en section AW sous le numéro 52 pour une contenance cadastrale de 29.000 m² environ.

Limite du terrain du projet sur fond de photographie aérienne.

Figure 1 : Situation géographique

Echelle: 1/25.000

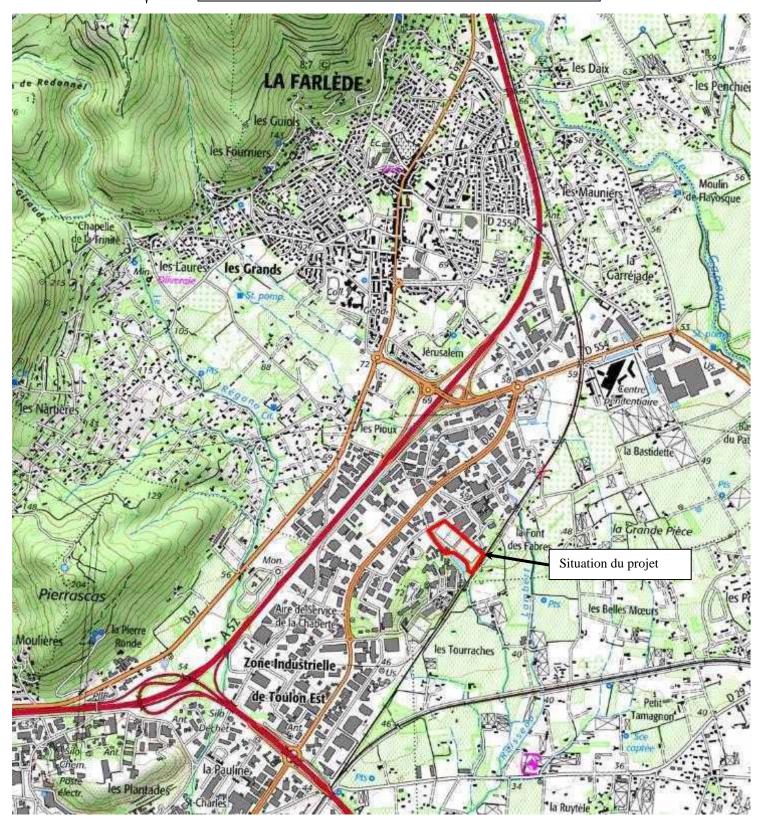


Figure 2 : Situation géographique sur photo aérienne

Echelle: 1/10.000

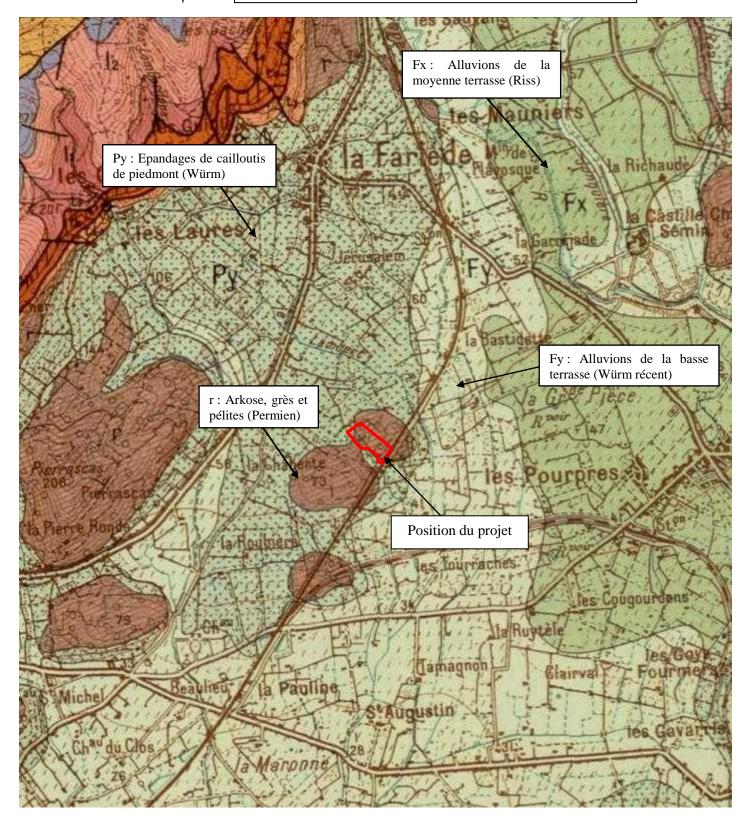


Figure 3 : Contexte géologique

Echelle: 1/25.000

2.2. Contexte geologique et hydrogeologique

D'après la carte géologique du BRGM (voir la figure 3), le terrain du projet repose sur les formations du Permien constituées de pélites, grès et arkoses ainsi que sur la formation des « Alluvions de la basse terrasse » datant du Würm récent constitué de cailloutis, graviers et sables.

Le site infoterre (http://infoterre.brgm.fr/) précise que le terrain du projet se situe dans la zone d'aléa « très élevé, nappe affleurante » dans la rubrique Risques naturels « d'inondation de nappe dans les sédiments » de la masse d'eau souterraine « Formations variées de la région de Toulon » (FRDG514) (voir la figure 4). Cette masse d'eau souterraine présente un bon état chimique.

Une étude géotechnique réalisée par la société FONDASOL (rapport : étude géotechnique d'avant-projet – Mission G2 – Phase AVP) pour la construction de plusieurs bâtiments sur un terrain situé Avenue du Docteur Calmette – La Farlède Force 5), met en évidence 3 formations lithologiques :

- Des remblais beiges à gris majoritairement caractérisés par des graves sableuses entre 0,2 m et 0,8 m de profondeur
- Une frange d'altération des pélites gréseuses caractérisée par des argiles sableuses rougeâtres/lie-de-vin présentes sur des épaisseurs variables entre 0,2 m et 2,5 m de profondeur.
- Le substratum rocheux, caractérisés par des pélites gréseuses, grès pélitiques gris, plus ou moins fracturés présents jusqu'à la base des sondages, soit 8 m de profondeur.

L'implantation des sondages réalisés est présentée en figure 5.

Des niveaux d'eau ont été identifiés au droit des sondages effectués par FONDASOL à des profondeurs comprises entre 1,2 m et 2,2 m. Ces niveaux d'eau sont à prendre avec précaution car non stabilisés au regard de la méthode de forage (injection d'eau).

Un suivi mensuel sur 6 mois est prévu par le bureau d'études afin d'obtenir des éléments plus précis, deux piézomètres ont été installés au droit des sondages CR1 et CR2 à 6 m de profondeur.

Le rapport de FONDASOL précise qu'il n'existe pas d'aquifère remarquable à ces profondeurs au droit du terrain du projet. En surface, à la suite d'épisodes pluvieux, des écoulements d'eau peuvent se produire sur les terrains de couverture. En profondeur, des circulations d'eau peuvent se manifester à la faveur des discontinuités du massif rocheux.

Une coupe du sondage CR1 est présentée en figure 6.

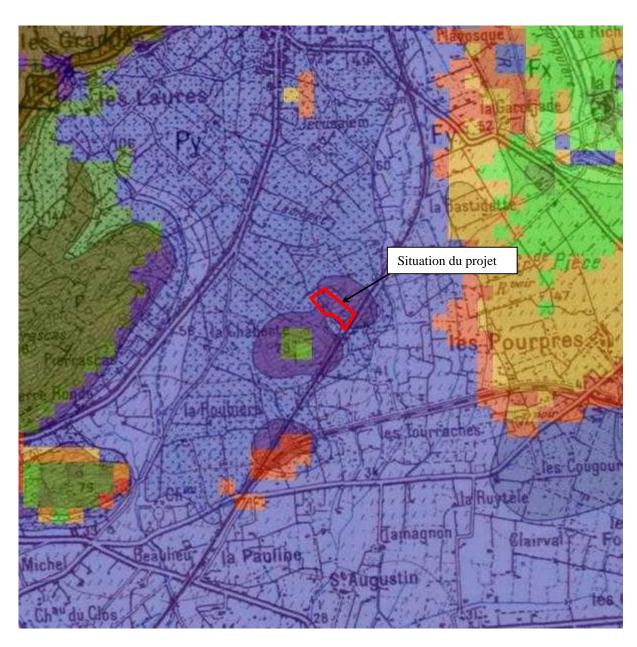
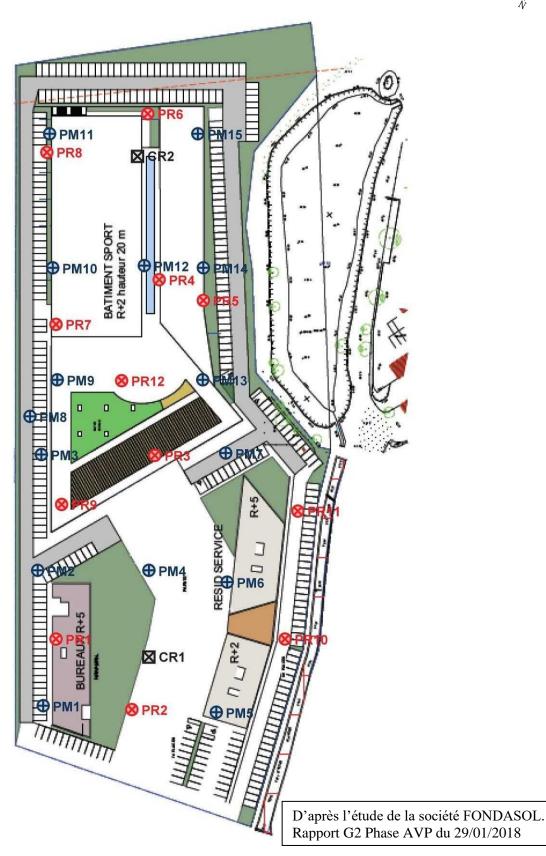

Les terrains du projet ne sont concernés par aucun périmètre de protection de captage d'A.E.P. (Annexe V) ni par une Zone de Répartition des Eaux (ZRE).



Figure 4 : Carte de sensibilité des terrains aux remontées de nappe.

Echelle: 1/25.000

Légende sédiment



fondasşl

20 m

Figure 6 : Coupe du sondage CR1

Construction de bâtiments de bureaux, d'un complexe n° AF.EN.18.0001 sportif et d'une résidence service

LA FARLEDE

Machine : Soco 50.7

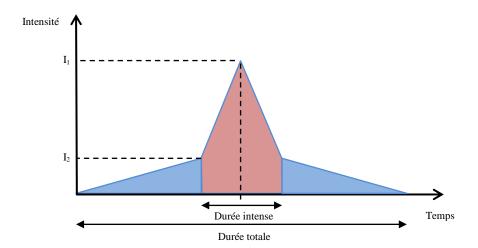
Angle °/verticale : 0°

1/50 Forage : CR1 EXGTE ß3.20.3/GTE

				0.01								
Cote (NI)	Prof (m)	Lithologie	Stratigraphie	Niveau d'eau (m)	Outil	Fluide	Tubage	Equipement forage	% carottage 0 100	Echantillons	Essais	RQD 0 100
57.4 57.1 56.9	0	Remblais : graves blanches et argiles grises (Dmax = 3 cm) Présence d'un géotextile à la base 0.2 m Remblais bruns : sables limoneux à quelques graves (Dmax = 3 cm) Présence de racines/débris végétaux	Remblais		ປະ ປະສາດttier percussion ສ Ø 114 mm		E					
55.6	2-	0.5 m Remblais gris-beige : argiles graveleuses (dmax = 2 cm) 0.7 m Sables argilo-graveleux à graves sablo argileux		tabilisé) 8.1	1.5 m	-	Ø 120-140 mm	E				X X X X X
54.4	3-	bordeau (frange altérée du substratum) 1.3 m Pélites gréseuses bordeau très fracturés Débit de la roche en éléments centimétriques à pluricentimétriques 2.0 m		09/01/2018 Niveau d'eau en fin de forage (non stabilisé)	ш. Ш.	Eau	3.0 m	Piézomètre : tubes PVC 45-50 mm		En caisses	3.0 m	X X X
34.4	4 -	Pélites gréseuses fracturés Débit de la roche en éléments pluricentimétriques Plan de fracturation argileux 3.2 m	Permien	09/01/2018 Niveau d'eau en fin	carottier rotation Ø116 mm			Piézomètre : tuk		En o	Lefranc	
	5-	Pélites gréseuses peu fracturés Pélites gréseuses peu fracturés Débit de la roche en éléments décimétiques à pluridécimétriques		00 VN	carottie							
51.6	6	Plan de fracturation avec placage argileux verdâtre à brun verdâtre à brun			6.0 m	6.0 m		6.0 m		6.0 m		

D'après l'étude de la société FONDASOL. Rapport G2 Phase AVP du 29/01/2018

2.3. Hydroclimatologie


Les précipitations se caractérisent par une relation reliant les paramètres suivants : hauteur précipitée durant l'averse, durée de l'averse, fréquence de l'averse. Ces paramètres sont reportés sur des courbes hauteur/durée/fréquence.

A fréquence d'apparition fixée, la précipitation qui donnera lieu au plus fort débit à l'exutoire du bassin versant sera celle dont la durée sera proche du temps de concentration de ce bassin versant. Le temps de concentration correspond au temps que mettra le ruissellement pour aboutir à l'exutoire du bassin versant depuis le point qui en est le plus éloigné.

Les précipitations de projet sur lesquelles nous réaliserons nos simulations hydrologiques seront comprises entre 6 minutes et 12 heures.

Les traitements statistiques ont été effectués sur les données pluviographiques de la station de HYERES sur la période 1977-2014. Les pluies de projet introduites dans le modèle hydrologique utilisé dans nos simulations sont du type « double triangle ».

La précipitation intense de période de retour nominale (T = 100 ans), et de durée égale au temps de concentration du bassin versant, est intégrée dans un épisode pluvieux non intense. La pluie de projet est de forme doublement triangulaire comme indiqué sur le graphique suivant :

Ces deux épisodes associés s'inscrivent individuellement dans un hyétogramme triangulaire, L'intensité maximale est centrée sur la durée de la pluie, Les relations entre durée et fréquence de ces deux phénomènes sont décrites dans la méthode de NORMAND (guide de la pluie de projet – S.T.U. – Janvier 1986).

Les données pluviographiques issues des traitements statistiques sont les suivantes :

Pluie	Période de retour T	Durée intense	Hauteur intense	Pluie associée	Durée totale	Hauteur totale
P _{100 ans, 6 mn}	100 ans	6 mn	18,3 mm	20 ans	2 h	72,6 mm
P _{100 ans, 15 mn}	100 ans	15 mn	34,9 mm	30 ans	2 h	79,2 mm
P _{100 ans, 30 mn}	100 ans	30 mn	52,6 mm	50 ans	3 h	93,9 mm
P _{100 ans, 60 mn}	100 ans	60 mn	76,0 mm	50 ans	3 h	93,9 mm
P _{100 ans, 120 mn}	100 ans	120 mn	99,5 mm	50 ans	6 h	129,8 mm
P _{100 ans, 180 mn}	100 ans	180 mn	104,5 mm	50 ans	12 h	149,3 mm
P _{100 ans, 360 mn}	100 ans	360 mn	149,4 mm	50 ans	24 h	172,3 mm
P _{100 ans, 720 mn}	100 ans	720 mn	167,8 mm	50 ans	24 h	172,3 mm

Tableau 1 : Données pluviographiques (Station de HYERES) pour la période 1977-2014. Hauteurs intenses et hauteurs totales associées.

Les intensités précipitées peuvent être abordées selon une autre approche afin de disposer de valeurs comprises entre les pas de temps définis ci-dessus. La formule de Montana exprime pour une période de retour donnée, la relation reliant l'intensité des précipitations au pas de temps d'enregistrement des données pluviométriques :

$$I = a.t^{-b}$$

I = Intensité de la précipitation correspondant au pas de temps (mm/mn)

t = pas de temps en minutes.

Dans cette formulation en hauteur d'eau de la formule de Montana, les coefficients a et b pour des temps de concentration de 6 à 60 mn sont les suivants :

Station de HYERES (83) - Période : 1973 – 2014 Pluies de durée 6 à 60 minutes						
Période de retour	Coefficients	de Montana	Coefficient « m »			
T	a b		$\mathbf{Q}_{\mathrm{T nat}} = \mathbf{m} \mathbf{x} \mathbf{Q}_{10 \mathrm{nat}}$			
1 an	3,062	0,477	0,43			
2 ans	3,424	0,433	0,58			
5 ans	3,847	0,431	0,84			
10 ans	4,436	0,416	1,00			
20 ans	4,932	0,398	1,25			
30 ans	5,172	0,385	1,37			
50 ans	5,396	0,365	1,60			
100 ans	5,656	0,338	2,50			

Tableau 2 : Coefficients de Montana pour des pluies de durées 6 à 60 minutes (HYERES pour la période 1977-2014)

Ces valeurs seront utilisées dans les calages hydrologiques effectués selon la méthode rationnelle.

PROJET: Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Notice d'incidences

2.4. Contexte hydrologique - caracteristiques des bassins versants a l'etat actuel

Les bassins versants sont caractérisés d'un point de vue hydrologique par leurs superficies naturelles et imperméabilisées et leurs coefficients de ruissellement respectifs ainsi que par leurs temps de concentration.

Un grand bassin versant nommé BV Vallon est subdivisé en 3 sous-bassins versants et sont reportés en figure 7 :

- BV Projet : ce sous bassin versant correspond au bassin versant du terrain du projet.
- BV Amont : ce sous bassin versant correspond au bassin versant amont au projet, constitué de hangars dominant les terrains de sport existants.
- BV Zone Industrielle : ce sous bassin versant correspond à la superficie restante de BV Vallon.

L'exutoire E1 de ces sous-bassins versants est un ouvrage en arche en pierres appariées passant sous la voie ferrée de section 1,30 x 1,50 m (hauteur x largeur), situé en aval du terrain du projet (voir la figure 7).

Un bassin versant nommé BV Université est extérieur aux sous-bassins versants définis ci-dessus. Son exutoire E1bis correspond au passage inférieur sous la voie ferrée, ouvrage situé à environ 20 m à l'Ouest de l'ouvrage en arche.

L'exutoire EF est défini en figure 7. Il représente la jonction aval des écoulements transitant par les exutoires E1 et E1 bis. L'exutoire EF correspond à un vallon marqué mais de faible capacité traversant la plaine de la Font des Fabres large et peu pentée, occupée par des vignes. Le vallon se jette en aval dans le Ruisseau de Lambert à environ 1 km de l'exutoire EF.

Les photographies des exutoires sont présentées dans le chapitre 2.5.

Le contexte hydraulique actuel détaillant les différents aménagements hydrauliques des bassins versants, leur fonctionnement et leur exutoire est décrit dans le chapitre 2.5.

Les eaux pluviales du bassin versant BV Projet seront collectées du Nord-Ouest vers le Sud-Est, selon l'organisation des réseaux pluviaux à l'état projeté et stockées dans un bassin écrêteur. Les ruissellements provenant du bassin versant BV Amont seront collectés et détournés en limite Nord-Est du terrain du projet, puis rejetés en aval du terrain.

La découpe et les caractéristiques des bassins versants sont justifiées par les aménagements hydrauliques actuels qui sont détaillés dans le chapitre 2.5.

Superficie des bassins versants à l'état actuel :

La répartition des surfaces imperméabilisées actuelles dans chaque bassin versant est la suivante :

Bassin versant	Exutoire	Superficie totale en m²	Superficie imperméabilisée en m²	Superficie naturelle en m²
BV Université	E1bis : Passage inférieur sous voie ferrée	16.000	11.200	4.800
BV VALLON	E1 : Ouvrage en arche sous la voie ferrée	395.300	314.890	80.410
	Sous bassins v	ersants de BV VAL	LON	
BV Projet		29.050	3.540	25.510
BV Amont	E1 : Ouvrage en arche sous la voie ferrée	16.500	14.000	2.500
BV Zone Industrielle	23.22 2.31 . 0.10 . 10.100	349.750	297.350	52.400

Tableau 3 : Répartition des superficies des bassins versants à l'état actuel.

Coefficient de ruissellement

Le respect des prescriptions reportées dans le document « Règles générales à prendre en compte dans la conception et la mise en œuvre des réseaux et ouvrages pour le département du Var » mis au point par la MISEN du Var en janvier 2014 conduit à retenir les coefficients de ruissellements suivants:

Occupation du sol		Pluie annuel – biennale Q ₁ – Q ₂	Pluie centennale à exceptionnelle (sols saturés en eau) Q100 – Qrare - Qexcep
Zones industrielles et commerciales		0,60 - 0,80	0,70 - 0,90
Sols imperméables avec végétation	Pente		
Sols impermeables avec vegetation	I <2%	0,13	0,35
	2% < I < 7%	0,18	0,45
Colo mamo échlos avec vé aétation	Pente		
Sols perméables avec végétation	I <2%	0,05	0,25
	2% < I < 7%	0,10	0,30
Terrain de sport		0,10	0,30

Tableau 4: Tableau des coefficients de ruissellements prescrits (Extrait – MISEN 83 – Janvier 2014).

Les coefficients de ruissellement naturel des terrains ont été définis selon le Guide Technique de l'Assainissement Routier (G.T.A.R.) de 2006 et le tableau du document de la MISEN 83.

Coefficient de ruissellement biennal naturel et actuel des bassins versants :

Le terrain du projet est constitué en partie par des terrains de sport et en partie par des sols imperméables avec végétation. La pente générale du terrain est inférieure à 2 %. Nous retenons un coefficient de ruissellement annuel et biennal naturel, pour le BV Projet de C_{1-2 ans naturel} = 0,12.

Le coefficient de ruissellement des surfaces imperméabilisées est constant : $C_{imp} = 1$.

Ainsi, le coefficient de ruissellement global de l'ensemble des bassins versants pour une période de retour T est calculé au prorata des surfaces naturelles (S_{nat}) et des surfaces imperméabilisées (S_{imp}):

$$C_T = \frac{(C_{Tnat} \times S_{nat}) + (C_{imp} \times S_{imp})}{S_{total}}$$

Coefficient de ruissellement centennal naturel des bassins versants :

La valeur du coefficient de ruissellement naturel croît avec l'intensité de la précipitation pour les périodes de retour supérieures à T = 10 ans. La variabilité du coefficient de ruissellement naturel est fonction de la rétention initiale P₀ du bassin versant.

Pour
$$C_{10 \text{ nat}} \ge 0,80$$
, on a: $P_0 = 0$ et $C_{T \text{ nat}} = C_{10 \text{ nat}}$
Pour $C_{10 \text{ nat}} < 0,80$, on a: $P_0 = \left(1 - \frac{C_{10 \text{ nat}}}{0,8}\right) \times P_{10}$

Pour C_{10 nat} < 0,80, on a:
$$P_0 = \left(1 - \frac{c_{10 \text{ nat}}}{0.8}\right) \times P_{10}$$

et
$$C_{T\,nat} = 0.8 \times \left(1 - \frac{p_0}{p_T}\right)$$

avec:

 $P_0 = R$ étention initiale (mm)

 P_{10} = Hauteur de la pluie journalière décennale (mm). Ici P_{10} = 118,1 mm.

 P_T = Hauteur de la pluie journalière de période de retour T (mm). Ici P_{100} = 163,6 mm.

Coefficient de ruissellement centennal actuel des bassins versants :

Les coefficients de ruissellement naturel ont été définis précédemment. Le coefficient de ruissellement des surfaces imperméabilisées est constant : $C_{imp} = 1$.

Ainsi, le coefficient de ruissellement global de l'ensemble des bassins versants étudiés pour une période de retour T est calculé au prorata des surfaces naturelles (S_{nat}) et des surfaces imperméabilisées (S_{imp}) :

$$C_T = \frac{(C_{Tnat} \times S_{nat}) + (C_{imp} \times S_{imp})}{S_{total}}$$

Les coefficients de ruissellement des bassins versants à l'état naturel et actuel pour une pluie centennale sont présentés dans le tableau ci-dessous :

		BV VALLO	N	BV Université
Coefficient de ruissellement centennal naturel	0,33			0,30
Coefficient de ruissellement centennal actuel moyen	0,86			0,79
	Sous-bassins versants de BV VALLON			
	BV Projet	BV Amont	BV Zone Industrielle	
Coefficient de ruissellement centennal naturel	0,33	0,35	0,30	
Coefficient de ruissellement centennal actuel moyen	0,41	0,90	0,88	

Tableau 5 : Coefficient de ruissellement centennal des bassins versants étudiés.

Temps de concentration

Le temps de concentration du bassin versant face à une précipitation décennale est approché au travers de la vitesse d'écoulement des ruissellements comme décrit dans le G.T.A.R.de 2006 :

$$t_{c \cdot 10} = \frac{1}{60} \sum_{j} \frac{L_j}{V_j}$$

avec : t_{c 10} = temps de concentration pour la période de retour décennale (minutes).

 L_j = longueur d'écoulement (en m) sur un tronçon où la vitesse d'écoulement est V_j (cheminement de pente constante).

Pour les zones de bassin versant à écoulement en nappe, les valeurs de vitesse sont établies par :

$$V = 1.4 \text{ x p}^{1/2}$$

avec : p = Pente en m/m

V = Vitesse en m/s

Pour les zones de bassin versant à écoulement concentré, les valeurs de vitesses sont établies par :

$$V = k \times p^{1/2} \times R_h^{2/3}$$

avec : k = coefficient de rugosité

p = Pente en m/m

 $R_h = Rayon hydraulique$

Les valeurs k = 15 et $R_h = 1$ sont généralement admises pour les études de faisabilité.

PROJET: Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Notice d'incidences

Pour des périodes de retour supérieures à décennales, la valeur du temps de concentration est adaptée par :

 $t_{c(T)} = t_{c10} \left(\frac{P_{(T)} - P_0}{P_{10} - P_0} \right)^{-0.23}$

Avec

t_{c10} = Temps de concentration pour la période de retour décennale

 $t_{c(T)} = Temps$ de concentration pour la période de retour correspondante au calcul et supérieure à décennale

 $P_{(T)}$ = Pluie journalière de période de retour T, en mm

 P_0 = Rétention initiale, en mm

		BV Université			
L _i et V _i	$P_{\text{moyenne}} = 1$, $L = 440$ 1			byenne = 1 % L = 725 m	$\begin{array}{c} P_{moyenne} = 5 \ \% \\ L = 200 \ m \end{array}$
<i>y y</i>	V = 0.16 m/s ((nappe)	V = 1,5	m/s (concentré)	V = 0.30 m/s (nappe)
t _{c 10}		54 mi	nutes		11 minutes
	Sous-ba	assins versan	ts de BV V	ALLON	
	DV Duoint	DVA		BV Zone	
	BV Projet	BV A	mont	Industrielle	
$L_{\rm j}$ et $V_{ m j}$	$P_{moyenne} = 2 \%$ $L = 345 m$ $V = 0.20 m/s$ (nappe)	P_{moyenne} $L = 6$ $V = 0,30 \text{ n}$ P_{moyenne} $L = 8$ $V = 2,4 \text{ m/s}$	60 m n/s (nappe) = 2,6 % 80 m	$P_{\text{moyenne}} = 1,3 \%$ $L = 440 \text{ m}$ $V = 0,16 \text{ m/s}$ (nappe) $P_{\text{moyenne}} = 1 \%$ $L = 725 \text{ m}$ $V = 1,5 \text{ m/s}$ (concentré)	
t _{c 10}	29 minutes	3,9 minute	•	54 minutes	

Tableau 6 : Temps de concentration décennal des bassins versants.

Les valeurs de temps de concentration inférieures à 6 mn, sont portées à 6 mn afin de rester dans la fourchette de calage des données statistiques de Météo France.

Intensité pluviométrique :

L'intensité pluviométrique en mm/min est définie selon la méthode rationnelle par :

$$I = a \times t^{-b}$$

Avec:

t : temps de concentration en minute du bassin versant (voir le tableau n°6) ;

a et b : coefficients de Montana de la période de retour retenue (voir le chapitre 2.3).

L'intensité pour chaque bassin versant du secteur d'étude a été définie selon son temps de concentration et la période de retour de la pluie retenue.

PROJET: Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Notice d'incidences

Calcul du débit de pointe de période de retour $T \ge 10$ ans :

Le débit de pointe est défini au travers de la méthode rationnelle, valable jusqu'à 10 km² sur la façade méditerranéenne et répondant à la formulation suivante :

$$Q_T = C_T * I_T * A$$

Avec:

Q_T: Débit de période de retour T (m³/s)

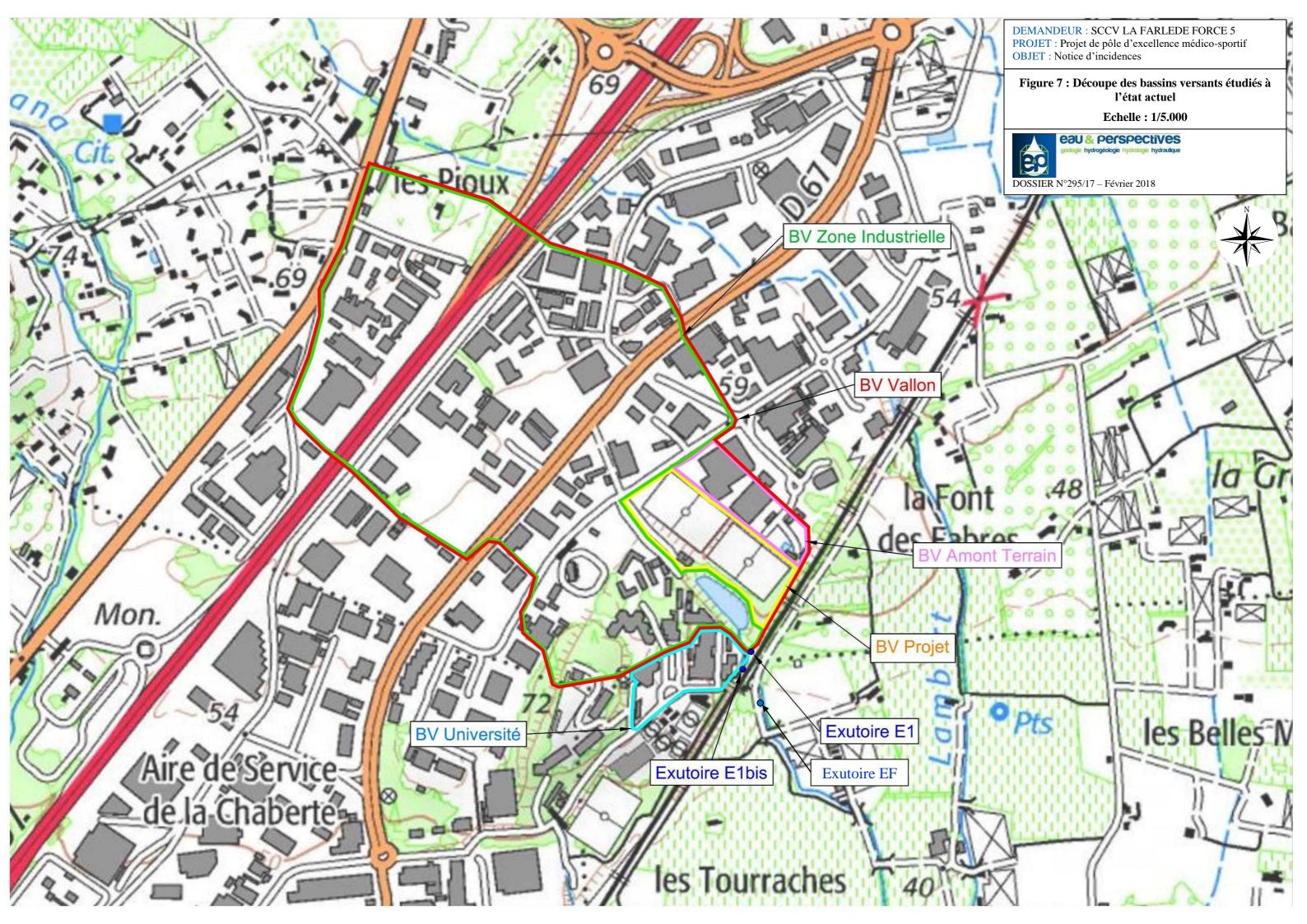
C_T: Coefficient de ruissellement global du bassin versant.

I_T: Intensité pluviométrique de période de retour T pour le temps de concentration t_{c(T)} (m/s).

A: Superficie du bassin versant (m²).

Le calcul de l'intensité biennale se fait au travers des coefficients de Montana $a_{2 \text{ ans}} = 3,424$ et $b_{2 \text{ ans}} = 0,433$.

Caractéristiques et débits de pointe des bassins versants étudiés


Les caractéristiques et les débits de pointe issus des bassins versants sont reportés ci-après.

Bassin versant		Surface totale	Coefficient de ruissellement	Temps de concentration tc ₁₀	Intensité pluviométrique	Débit de pointe
BV Université		16.000 m² dont 11.200 m² imperméabilisés	$C_{100act} = 0,79$	11 minutes	$I_{100 \text{ ans}} = 4,43.10^{-5} \text{ m/s}$	$Q_{100act} = 560 \text{ L/s}$
BV VALLON		395.300 m² dont 314.890 m² imperméabilisés	$C_{100act} = 0.86$	54 minutes	$I_{100 \text{ ans}} = 2,59.10^{-5} \text{ m/s}$	$Q_{100act} = 8.792 \text{ L/s}$
	Sous bassins versants de BV VALLON					
	BV Projet	29.050 m² dont 3.540 m² imperméabilisés	$C_{100act} = 0,41$	29 minutes	$I_{100 \text{ ans}} = 3,19.10^{-5} \text{ m/s}$	$Q_{100act} = 447 \text{ L/s}$
	BV Amont	16.500 m ² dont 14.000 m ² imperméabilisés	$C_{100act} = 0,90$	6 minutes	$I_{100 \text{ ans}} = 5,14.10^{-5} \text{ m/s}$	$Q_{100act} = 763 \text{ L/s}$
	BV Zone Industrielle	349.750 m² dont 297.350 m² imperméabilisés	$C_{100act} = 0.88$	54 minutes	$I_{100 \text{ ans}} = 2,59.10^{-5} \text{ m/s}$	$Q_{100act} = 7.960 \text{ L/s}$

Tableau 7 : Caractéristiques et débits de pointe des bassins versants étudiés à l'état actuel.

A l'exutoire E1, les débits de l'ensemble des sous bassins versants réunis sous le nom de BV Vallon conduisent à un débit centennal actuel de 8,792 m³/s, hors effet de réduction des débits par le bassin écrêteur communal qui est décrit en fin de chapitre 2.5.

2.5. CONTEXTE HYDRAULIQUE ACTUEL

Description des aménagements hydrauliques actuels

Le terrain du projet s'inscrit dans un grand bassin versant de 39,53 ha qui comprend une partie de la Zone Industrielle de Toulon-Est, une portion de l'autoroute A57 ainsi que des bâtiments d'habitation et commerciaux à l'amont de celle-ci (voir les figures 7 et 8).

Les eaux pluviales du bassin versant BV Vallon s'écoulent vers le Sud-Est, selon une pente moyenne de 1 %, en direction d'un vallon affluent du Ruisseau de Lambert. Notons que le BV Vallon est situé dans le bassin versant de l'Eygoutier.

La figure 8 présente la découpe du bassin versant BV Vallon ainsi que les aménagements hydrauliques actuels.

Dans ce contexte topographique de terrains en pente vers le Sud-Est, des aménagements de la Zone Industrielle de Toulon-Est et des observations faites lors de notre visite de terrain, les écoulements à l'état actuel sont organisés selon le schéma suivant :

- Au Nord de l'autoroute A57, les eaux pluviales s'écoulent de façon diffuse sur les terrains commerciaux et privés jusqu'à rejoindre un fossé longeant l'A57. Les ruissellements sont dirigés vers un fossé longeant le Chemin Alphonse Lavallée, qui reçoit les eaux pluviales de l'A57. Le réseau pluvial de l'A57 se termine en diamètre Ø 800 mm.

Photo 1 : Fossé en amont de l'A57.

Photo 2 : Buse Ø 800 mm en aval de l'autoroute, relié au fossé du Chemin Alphonse Lavallée.

- Un ouvrage en U béton de section 0,50 m x 0,80 m (hauteur x largeur) sous couverture puis à ciel ouvert permet le transit des eaux sous les divers bâtiments commerciaux entre le Chemin Alphonse Lavallée et la Rue du Docteur Calmette. Ce cadre rejoint un fossé en U béton de section 0,50 m x 0,6 m sous l'Avenue du Docteur Calmette.

Photo 4 : Ouvrage U béton arrivant dans le fossé U béton sur la Rue du Docteur Calmette.

Photo 3: U béton passant sous le Chemin Alphonse Lavallée.

Le long de la rue du Docteur Calmette, plusieurs fossés en U en béton de section moyenne 0,50 m x 0,60 m (hauteur x largeur) permettent la collecte des ruissellements de la voirie et des constructions. Ces eaux sont ensuite dirigées vers le Sud-Est, au travers d'un cadre de section 1 m x 1,35 m (hauteur x largeur), au droit de la rue située entre le terrain du projet et

le Lycée de La Tourrache.

Photo 5 : U béton, coté Sud-Est de la Rue du Docteur Calmette.

Photo 6: Cadre béton 1 m x 1,35 m longeant le terrain du projet, en direction du Sud-Est.

- Le cadre béton 1 m x 1,35 m se poursuit en direction du Sud-Est, vers un bassin de rétention communal à ciel ouvert situé entre le terrain du projet et le Centre de Formation d'Apprentis de Toulon. Le bassin de rétention régule les ruissellements provenant de la Zone Industrielle de Toulon-Est, du terrain du projet et du bassin versant amont, soit le bassin versant BV Vallon. Les débits de ce bassin versant sont régulés au travers d'une buse en diamètre Ø 500 mm. Les débits régulés sont dirigés dans un vallon, affluent du Ruisseau de Lambert. Ce vallon passe sous la voie ferrée en direction du Sud-Est au travers d'une arche en pierres appariées de dimension 1,30 m x 1,50 m (flèche x largeur). L'ouvrage en arche, en aval du bassin de rétention constitue l'exutoire principal E1.

Photo 7 : Bassin de rétention du BV Vallon.

Photo 8 : Arche traversant la voie ferrée, située en sortie du bassin de rétention.

- Un second exutoire nommé E1bis a été défini en cas de surverse du bassin de rétention et d'incapacité de l'ouvrage en arche à faire transiter le débit arrivant au droit de ce dernier. Cet exutoire correspond à un passage piéton de 3,10 m de large sur environ 2 m de haut, sous la voie ferrée, situé à environ 20 m au Sud-Ouest de l'ouvrage en arche et du bassin de rétention. Les eaux de surverse du bassin écrêteur communal se dirigent vers ce passage inférieur sous la voie ferrée ainsi qu'une partie des eaux provenant du complexe scolaire du CFA de Toulon (BV Université) au travers d'une buse de diamètre Ø 500 mm.

Photo 9 : Passage sous la voie ferrée. Exutoire E1 bis.

- Un exutoire final EF est défini en aval de la voie ferrée. L'exutoire EF correspond à un vallon en aval de la voie ferrée, où les écoulements des exutoires E1 et E1 bis se rejoignent. Ce vallon est encombré de végétations, de faible capacité hydraulique et longe un chemin à proximité de champs cultivés et de vignes. Ces terrains présentent une très faible pente sur plusieurs centaines de mètres. Le vallon est marqué mais sa capacité de transit est faible. Il peut connaître des débordements qui s'étendent dans la plaine.

Photo 10 : Vallon en aval de la voie ferrée longeant un chemin. Exutoire EF contenant les eaux des exutoires E1 et E1bis.

Concernant le terrain du projet :

Les eaux provenant de la partie Nord-Ouest du bassin versant BV Amont s'écoulent de façon diffuse selon la topographie (talus) vers le terrain du projet (BV Projet).
Les ruissellements issus de la partie Sud-Est du bassin versant BV Amont sont collectés au droit de la limite cadastrale avec le terrain du projet au travers d'une buse en béton de diamètre demi Ø 500 mm. L'exutoire de cet ouvrage n'est pas clairement défini : les eaux ruissellent en sortie de cet ouvrage de façon diffuse sur la partie Sud-Est du terrain du projet, à proximité d'un bois de pins et au travers d'une végétation dense. Des laisses de crues obstruant la fin de l'ouvrage de collecte ont été observées lors de la visite de terrain.

Photo 11: Vue de la partie Nord-Ouest du bassin versant BV Amont depuis le terrain du projet.

Photo 12: Demi buse Ø 500 mm sur la partie Sud-Est du bassin versant BV Amont, encombrée par d'anciennes laisses de crues, des flottants et des déchets divers.

Photo 13: Bois de pins et végétation dense de la partie Sud-Est du bassin versant BV Projet, où ruissellent les eaux provenant de la demi buse Ø 500 mm du bassin versant BV Amont.

- Les eaux du bassin versant BV Projet ruissellent de façon diffuse sur toute la surface non imperméabilisée du terrain.

Les stationnements situés entre les terrains de sport et le cadre béton sont collectés et rejetés pour partie dans le cadre béton au travers de caniveaux ou dans le bassin de rétention existant.

La pente du bassin versant BV Projet est en moyenne de 2 % et orientée vers le Sud-Est. Les eaux issues des bassins versant BV Projet et BV Amont sont dirigées vers le bassin de rétention existant par les pentes des terrains.

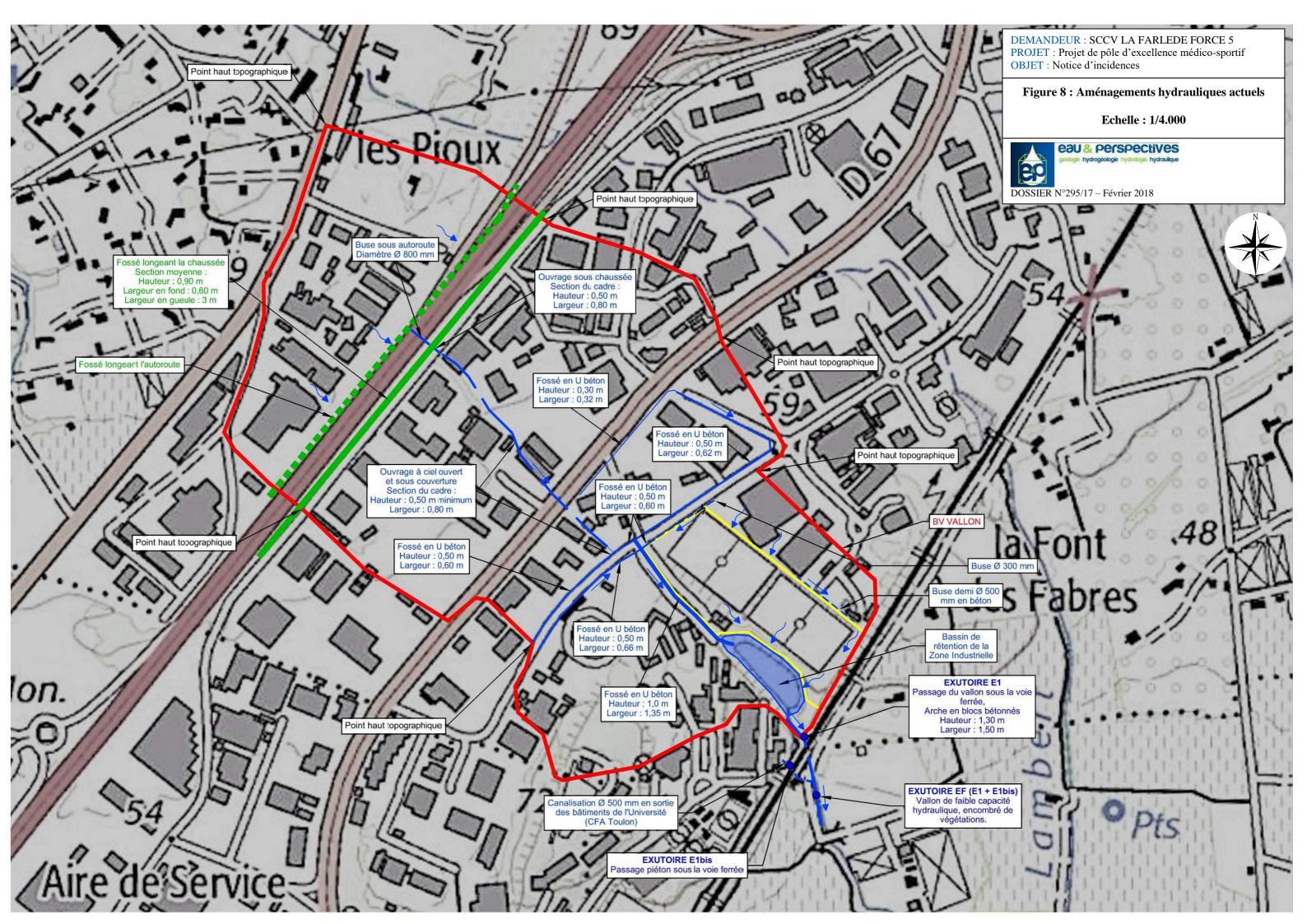


Photo 14: Terrains de sport du projet (BV Projet).

Photo 15 : Vue d'une partie du BV Projet depuis le bassin de rétention existant.

Fonctionnement du bassin de rétention de la Zone Industrielle en aval de BV Projet

Le bassin de rétention de la Zone Industrielle de Toulon-Est collecte et régule les eaux provenant du bassin versant BV Vallon.

Le fonctionnement de ce bassin a été modélisé pour une pluie d'occurrence centennale (soit un débit de 8.792 L/s pour le BV Vallon). Le tableau 8 ci-dessous présente la relation reliant hauteur d'eau, débit en sortie et volume du bassin.

Le bassin de rétention présente une évacuation en diamètre \emptyset 500 mm dont le fonctionnement est assimilé à une loi d'ajutage du type :

$$Q = k.S.\sqrt{2g.h}$$

Avec:

- S : surface de l'orifice (m²)

- $g: 9.81 \text{ m/s}^2$

- h : charge sur l'orifice mesuré du niveau amont du plan d'eau jusqu'au centre de gravité de l'orifice (m)

- k : coefficient d'ajutage égal à 0,62 pour un ajutage arasé dans le bassin.

Hauteur d'eau en m	Surface en m ²	Volume du bassin estimé en m ³	Débit en sortie en L/s (Ø 500 mm)
0,00	2.758	0	0
0,20	2.857	561	0
0,40	2.955	1.143	0
0,60	3.054	1.744	319
0,80	3.153	2.364	400
1,00	3.251	3.005	467
1,20	3.350	3.665	526

Tableau 8 : Loi hauteur / volume / débit du bassin de rétention communal avec un débit régulé.

Au-delà de 1,20 m de hauteur d'eau, le bassin surverse. Les débits surversant rejoignent le vallon en aval du bassin, puis l'ouvrage en arche décrit précédemment (voir le chapitre 2.5.)

Les débits surversant du bassin de rétention ont été estimés au travers d'une formule de débordement sur un seuil :

$$O = C \cdot L \cdot H^{3/2}$$

Avec: Q: Débit (m³/s)

$$C = \mu \sqrt{2g} = 4,429 \cdot \mu$$

 μ = coefficient de débit. La valeur adoptée est μ = 0,34

L : Longueur déversante. Ici, 25 m environ.

H : Charge sur le déversoir.

OBJET: Notice d'incidences

Hauteur d'eau totale en m (dans le bassin + surversante)	Hauteur d'eau surversante (m)	Volume du bassin estimé en m ³	Débit surversant en m³/s
1,30	0,10	4.000	1,19
1,40	0,20	4.335	3,38
1,50	0,30	4.670	6,20
1,55	0,35	4.838	7,82
1,60	0,40	5.006	9,55
1,70	0,50	5.341	13,35
1,80	0,60	5.677	17,54
1,90	0,70	6.012	22,11
2,00	0,80	6.348	27,01

Tableau 9 : Loi hauteur / volume / débit du bassin de rétention communal avec un débit surversant.

La simulation réalisée sur le modèle pluie – débit du bassin de rétention mène aux résultats suivants :

Précipitations	Débit d'entrée	Débit (surversant)	Volume de régulation	Hauteur d'eau
	(m^3/s)	en sortie (m ³ /s)	maximum (m ³)	maximale (m)
P 100, 60 minutes	8,48	6,00	4.647	1,49
P 100, 2 heures	6,37	4,74	4.497	1,45
P 100, 3 heures	4,79	3,57	4.358	1,41
P 100, 6 heures	4,02	3,09	4.291	1,39
P 100, 12 heures	2,42	1,94	4.116	1,33

Tableau 10 : Simulations de fonctionnement du bassin de rétention de la Zone Industrielle. Débits actuels de période de retour T=100 ans

Nota : Le débit de la pluie centennale de 60 minutes est légèrement inférieure au débit de pointe centennal de BV Vallon car ce dernier est caractérisé par un temps de concentration de 54 minutes.

A l'état actuel, le débit centennal issu du bassin versant BV Vallon pour une durée de pluie de 60 minutes est de 8.485 L/s.

Le bassin de rétention de la Zone Industrielle ne permet pas la régulation du débit centennal du bassin versant BV Vallon.

Pour une pluie d'occurrence centennale, le débit de surverse du bassin est de 6,0 m³/s dirigé vers l'exutoire E1.

OBJET: Notice d'incidences

Capacité des ouvrages hydrauliques

Sur la base du plan topographique transmis et des observations de terrain, le calcul concernant la capacité hydraulique de l'ouvrage en arche (1,30 m x 1,50 m) à l'état actuel est établie au travers d'une loi de type Manning-Strickler (régime permanent invarié) en retenant les caractéristiques hydrauliques de l'ouvrage (Coefficient de Manning-Strickler, section traversée, pente du fil d'eau).

La formule de Manning Strickler est la suivante :

$$Q = K * S * Rh^{2/3} * I^{1/2}$$

Avec : Q : le débit

K : coefficient de rugosité ici retenu à 60

S : la section mouillée Rh : le rayon hydraulique I : la pente longitudinale

Arche en blocs bétonnés	Pente fil d'eau (m/m)	Débit capable de l'ouvrage (m³/s)	Débit maximal surversant du bassin de rétention (m³/s)
Périmètre : 4,96 m Surface mouillée : 1,71 m	0,01	5 m ³ /s	6 m ³ /s

Tableau 11 : Capacité de l'exutoire E1 : Arche en blocs bétonnés.

L'arche permettant la traversée du vallon sous la voie ferrée assure le transit d'un débit maximum de 5 m³/s.

En sortie du bassin de rétention, les eaux régulées et surversantes, soit environ 6 m³/s se dirigent vers le vallon et l'exutoire E1 (arche en blocs bétonnés).

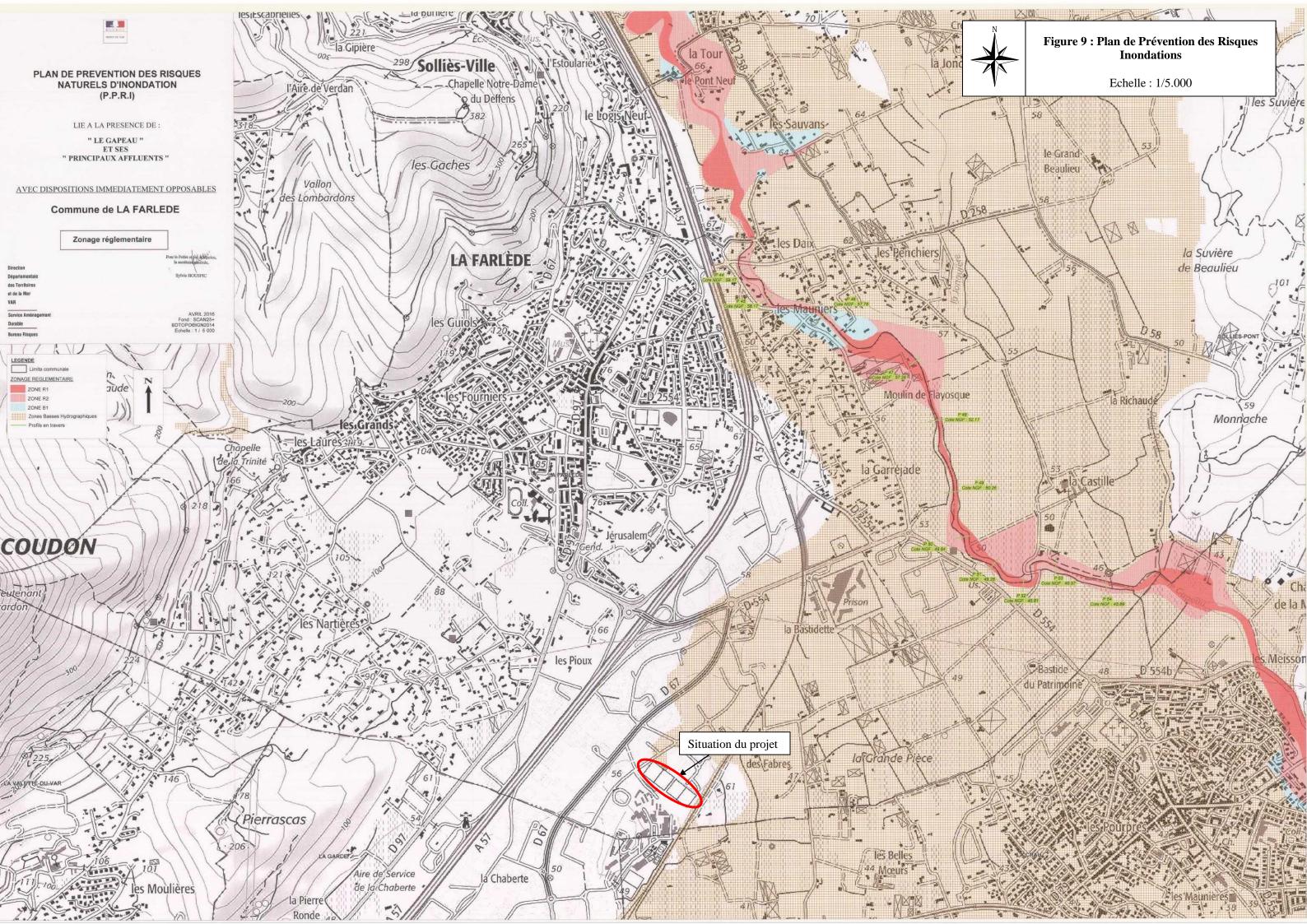
L'ouvrage n'ayant qu'une capacité de transit de $5~\text{m}^3/\text{s}$ du débit centennal, le reliquat de ce débit, soit $1~\text{m}^3/\text{s}$ se dirige vers l'exutoire E1bis au Sud-Ouest de l'exutoire E1.

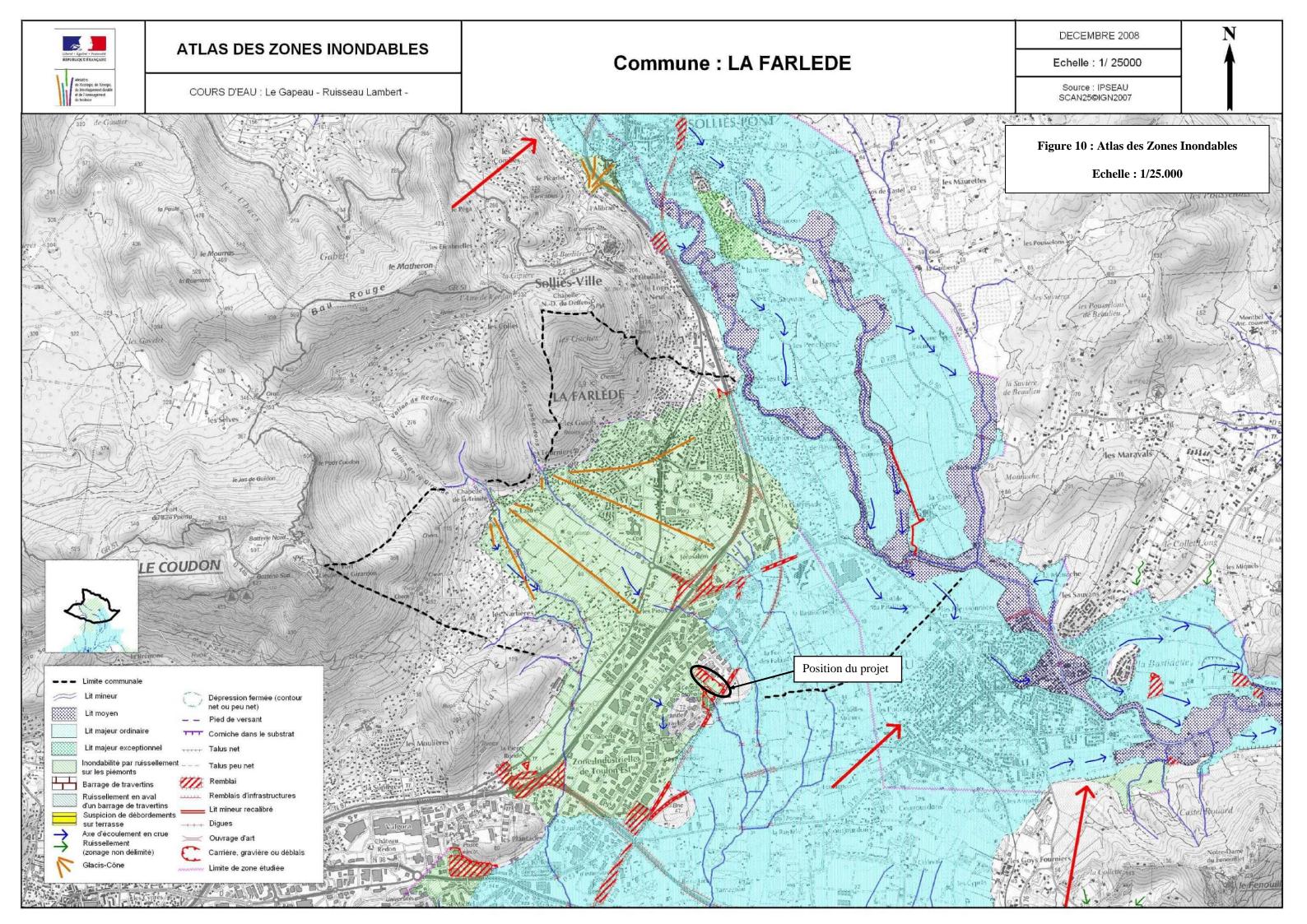
En aval de la voie ferrée, les débits provenant de ces deux exutoires se rejoignent dans un même vallon (Exutoire EF) à proximité de champs et de vignes. Ce vallon est un affluent du Ruisseau de Lambert qu'il rejoint 1 km environ en aval du terrain du projet.

2.6. PPRI-AZI-PGRI-TRI

Le « Plan de Prévention des Risques Inondation » de la commune de La Farlède est en cours d'élaboration mais la commune dispose d'un PPR Inondation Anticipé avec dispositions immédiatement opposables (voir la figure 9). Le terrain du projet se situe en zone blanche, non soumise à des mesures de prévention. Notons que le terrain est situé en dehors des zones basses hydrographiques.

Le projet est situé dans la zone « d'inondabilité par ruissellement sur les piedmonts » et dans une zone de remblai d'après l'Atlas des Zones Inondables (AZI) (voir la figure 10). Notons que tous les sondages réalisés par FONDASOL montrent une épaisseur de remblai infra-métrique sur un substratum pélitique rocheux. Il ne s'agit pas de remblai (même ancien) dans un lit majeur de cours d'eau.


La carte des Territoires à Risques d'Inondation (TRI) a été consultée (voir la figure 11). Le projet est situé hors des zones de crues cartographiées (zone blanche).


2.7. VERIFICATION DE L'ABSENCE DE SITE POLLUE SUR LA BASE DE DONNEES DU SITE BASIAS

Le site www.georisques.gouv.fr/dossiers/basias a été consulté. D'après les sites recensés, il n'existe pas de terrain ou d'activité pouvant être une source de pollution recensée dans un rayon de 200 m autour de la propriété du projet.

Le terrain est situé à proximité de deux installations classées, un commerce de réparation automobile et une blanchisserie situés à environ 200 m au Nord-Ouest.

OBJET: Notice d'incidences

2.8. Contexte environnemental

Il a été inventorié (voir la figure 12) sur les territoires proches du terrain du projet les éléments de protection environnementale Natura 2000 suivants :

- La zone B FR9301608 « Mont Caume Mont Faron Forêt domaniale des Morières » située à environ 2 km au Nord-Ouest. Ce site présente une superficie de 11.304 ha.
- La zone B FR9301622 « La Plaine et le Massif des Maures » située à environ 4,3 km au Sud-Est. Ce site présente une superficie de 34.264 ha.

Les zones de protections concernant les espaces naturels et la biodiversité ont été recensées à proximité du site d'étude :

- Une ZNIEFF terrestre de type II dénommée « Mont Combe Coudon Les Baus Rouges Vallauris » n°930012495, située à environ 2,2 km au Nord-Ouest.
- Une ZNIEFF terrestre de type II dénommée « Ripisylves et agrosystèmes de Sauvebonne et de Réal Martin » n° 930020277 située à 3 km à l'Est.
- Une ZNIEFF terrestre de type II dénommée « Maurettes Le Fenouillet Le Mont Redon » n°930012493, située à environ 3 km à l'Est.

Les terrains du projet sont situés en dehors des zones de sensibilité du Plan national d'actions (PNA) en faveur de la tortue d'Hermann.

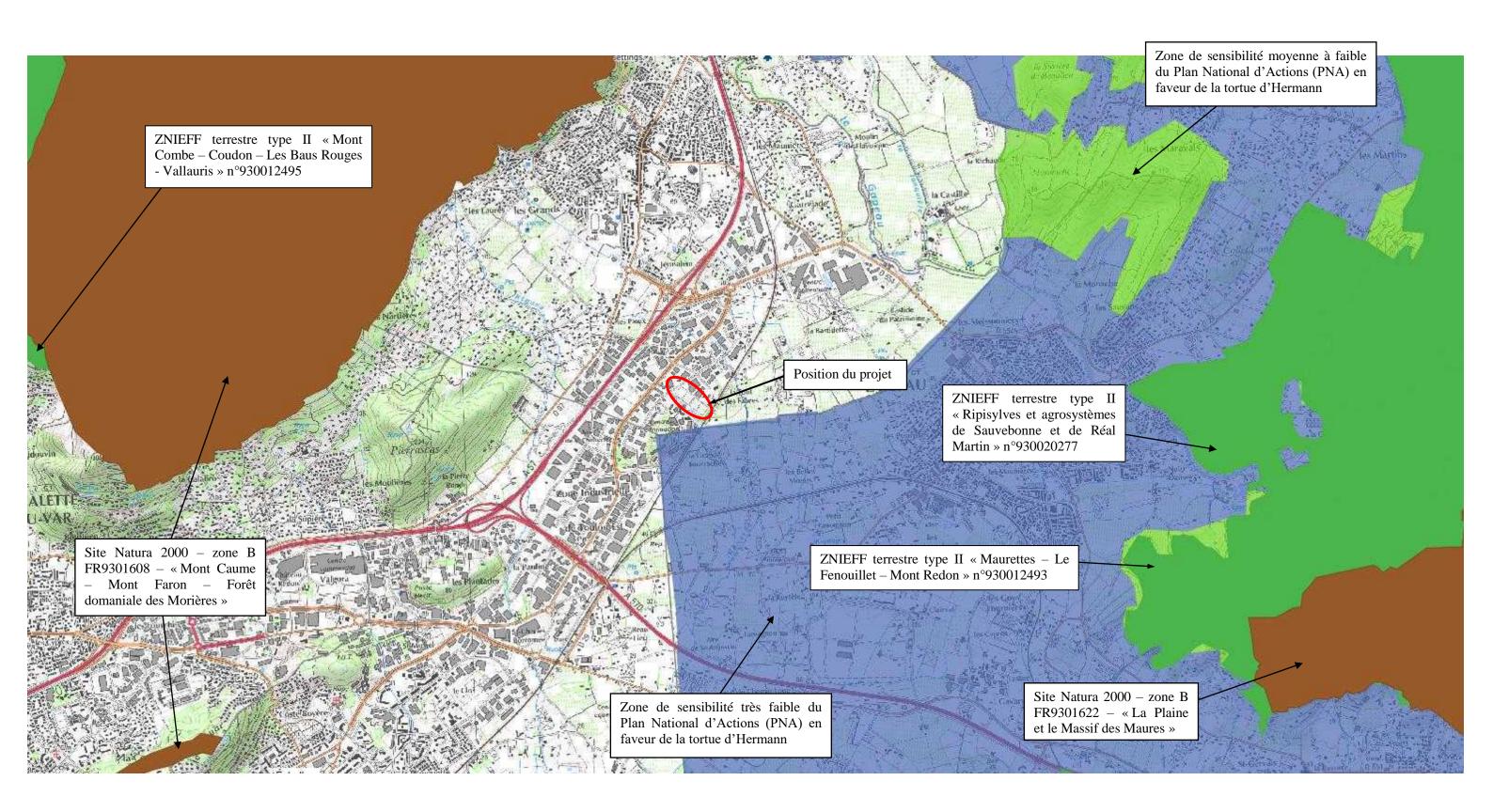

(http://carmen.developpement-durable.gouv.fr/25/environnement.map).

Figure 12 : Contexte environnemental.

Echelle: 1/25.000

3. ETAT PROJETE - DESCRIPTION DU PROJET

Le projet prévoit la création d'un pôle d'excellence médico-sportif comprenant un bâtiment d'activités sportives, un centre d'affaires, une résidence de services, des voies et dessertes et des stationnements extérieurs et en sous-sols (R-1 et R-2).

Le plan de masse du projet est présenté en figure 13.

4. IMPACTS DES AMENAGEMENTS PROJETES

4.1. IMPACTS QUANTITATIFS - HYDROLOGIE DU BASSIN VERSANT A L'ETAT PROJETE

A l'état projeté, des imperméabilisations sont prévues sur le terrain du projet (BV Projet d'une contenance cadastrale de 29.050 m²).

Le BV Projet est subdivisé à l'état projeté en une surface qui sera aménagée et imperméabilisée qui devra être régulée dans un bassin écrêteur et en une surface naturelle maintenue à l'état naturel en position basse qui ne pourra pas être collectée.

Le bassin versant aménagé et collecté présente une emprise de 27.360 m² (BV Collecté).

Les espaces verts situés au Sud-Est de la parcelle ne seront pas collectés, soit 1.690 m².

La découpe du bassin versant BV Collecté est présentée en figure 13.

La valeur du débit de pointe biennal actuel du bassin versant BV Collecté a été définie selon les méthodes décrites précédemment dans le chapitre 2.4.

Compte tenu du faible linéaire d'écoulement avant collecte des eaux ruisselées par le réseau pluvial, le temps de concentration décennal du bassin versant BV Collecté à l'état projeté est inférieur à 6 minutes.

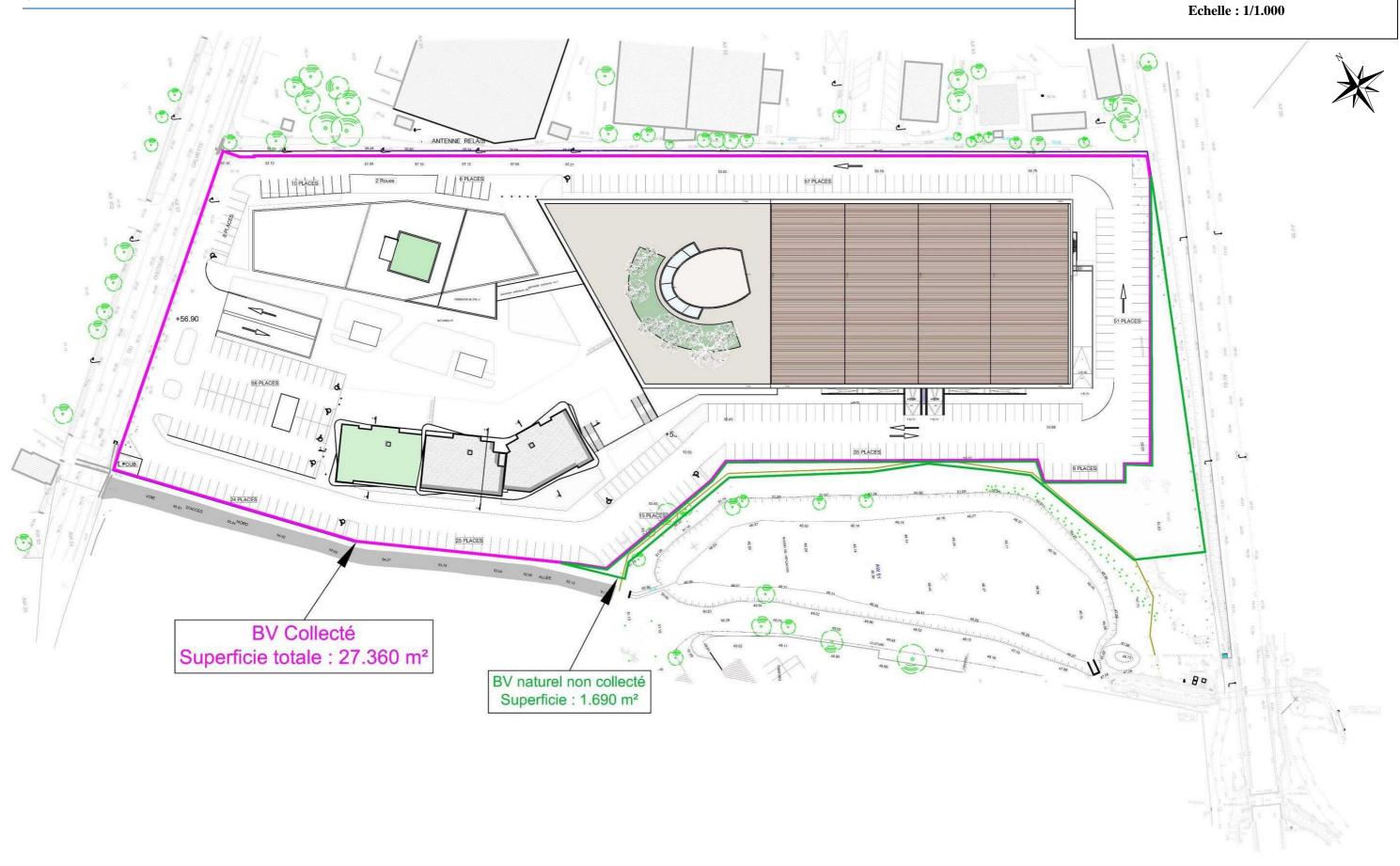
Il sera porté à t_{c10} = 6 minutes, afin de rester dans la fourchette de calages statistiques des données METEOFRANCE®.

Les caractéristiques issues du bassin versant BV Collecté à l'état actuel et projeté sont reportées ciaprès :

Bassin versant BV Collecté	Surface imperméabilisée	Coefficient de ruissellement	Temps de concentration tc ₁₀	Intensité pluviométrique	Débit de pointe
Etat actuel	3.540 m²	$C_{2act} = 0.23$ $C_{2act} = 0.33$	26 minutes	$I_{2 \text{ ans act}} = 1,39.10^{-5} \text{ m/s}$ $I_{100 \text{ ans act}} = 3,31.10^{-5} \text{ m/s}$	$Q_{2act} = 88 \text{ L/s}$ $Q_{100act} = 441 \text{ L/s}$
Etat projeté	26.815 m²	$C_{100\text{projet}} = 0,99$	6 minutes	$I_{100 \text{ ans projet}} = 5,14.10^{-5} \text{ m/s}$	$Q_{100 projet} = 1.389 \text{ L/s}$

Tableau 12 : Caractéristiques et débits de pointe du bassin versant BV Collecté.

Le débit centennal en sortie du bassin versant BV Collecté passe de 441 L/s à l'état actuel à 1.389 L/s à l'état projeté.


Actuellement, les eaux provenant de BV Amont finissent dans le bassin de rétention de la Zone Industrielle.

A l'état projeté, ces eaux seront collectées en limite Nord-Est par un caniveau et dirigées vers ce même bassin de rétention, sans modification de débit.

Les modalités de fonctionnement du bassin de rétention de la Zone Industrielle ne sont pas modifiées par le projet.

PROJET : Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 » OBJET : Notice d'incidences

OBJET: Notice d'incidences

4.2. IMPACTS QUANTITATIFS – EAUX SOUTERRAINES

Les reconnaissances de sol ont montré la présence d'un substratum de pélites fracturées et par nature peu perméables. Le recouvrement de remblais et de sols sportifs d'une épaisseur décimétrique peut présenter des niveaux de circulation d'eau temporaires que la minéralisation du site par le projet tendra à réduire.

La position perchée des plateformes du projet par rapport au bassin écrêteur communal va dans le sens d'une absence de nappe au droit du projet.

En phase chantier, des terrassements sont prévus pour les sous-sols et le bassin écrêteur de l'opération. La cote altimétrique du niveau R-2 de sous-sols la plus basse est de 52,10 m, la cote de terrassement sera à environ 0,30 m en dessous, soit à la cote 51,80 m.

La cote de fond du bassin sera à 49,25 m (cote altimétrique en sortie du bassin), la cote de terrassement du bassin écrêteur de l'opération sera à environ 49,00 m.

En phase définitive, les sous-sols seront étanchés. Il n'est pas prévu de pompage permanent.

Un suivi des niveaux de nappe est en cours. Ce suivi devra être analysé pour identifier s'il y a nécessité de prévoir des rabattements par pompage en phase chantier. En cas de nécessité de pompages provisoires de chantier, une demande spécifique au titre de la « Loi sur l'Eau » sera réalisée préalablement aux travaux pour les rubriques 1.1.1.0. et 1.1.2.0. et des analysés d'eau seront alors effectuées afin de renseigner la rubrique 2.2.3.0..

4.3. <u>IMPACTS QUALITATIFS – EAUX DE VOIRIES ET EAUX USEES</u>

Les eaux de voirie

Les aménagements du projet vont amener une circulation de véhicules à moteur qui va engendrer une pollution chronique des eaux pluviales. Les eaux de ruissellements issus des voiries seront traitées dans le bassin écrêteur projeté avant leur rejet dans le réseau pluvial projeté au Sud-Est du terrain du projet.

Les eaux usées

Les eaux usées générées par les bâtiments du projet seront évacuées par le réseau d'eaux usées intercommunal et traitées à la station d'épuration de LA CRAU VALLEE DU GAPEAU (Code station : 06 09 83047 002) exploitée par la SADE EXPLOITATIONS SUD EST DE LA FRANCE. Cette station présente une capacité de près de 80.600 équivalents habitants. D'après le site internet http://assainissement.developpement-durable.gouv.fr/station.php?code=060983047002, cette station est conforme en équipement et en performance. Le milieu récepteur des eaux usées traitées est le vallon du Gapeau (Bassin hydrographique : RHONE-MEDITERRANEE-CORSE, bassin versant : Le Gapeau).

La station d'épuration est dimensionnée pour assurer le traitement d'un volume journalier moyen de 14.319 m³ d'eaux usées.

En première approche, le site génèrerait l'équivalent de production d'eaux usées d'environ 1.000 EH.

4.4. IMPACT ENVIRONNEMENTAL

Le site correspond actuellement à des terrains sportifs enherbés et en terre, il est localisé à proximité de la Zone Industrielle de Toulon-Est et séparé d'environ 2 km des sites naturels d'intérêt les plus proches et ne présente pas d'enjeux environnementaux liés à la présence de zone de protection concernant les espaces naturels et la biodiversité.

5. MESURES COMPENSATOIRES – BASSIN ECRETEUR

La mise en place d'un réseau de collecte et d'un bassin écrêteur de débit est nécessaire afin de réguler les débits d'eaux pluviales du projet, ainsi que la création d'un réseau pluvial pour diriger les écoulements vers un vallon situé à l'aval du terrain du projet, à proximité de la voie ferrée.

5.1. REGLES RETENUES POUR LE DIMENSIONNEMENT DES BASSINS ECRETEURS DU PROJET

Le document « Règles générales à prendre en compte dans la conception et la mise en œuvre des réseaux et ouvrages pour le département du Var » mis au point par la MISEN du Var en janvier 2014 précise le principe de régulation à adopter :

- Volume minimum de rétention répondant au minimum de 100 L/m² imperméabilisé.
- Préconisations du PLU ou du POS si ces dernières sont plus contraignantes.
- La surface minimale imperméabilisée forfaitaire par lot pour une construction individuelle sera de 200 m².
- Dans le cas particulier d'enjeux identifiés par l'étude hydraulique, tels l'insuffisance des exutoires à l'aval de l'opération, l'aménagement ne doit entraîner une augmentation ni de la fréquence ni de l'ampleur des débordements au droit des enjeux identifiés. Les volumes de rétention doivent alors être déterminés en fonction de la fréquence admissible pour le débordement des exutoires à l'aval de l'opération.
- Méthode de calcul des débits de pointe avant et après aménagement pour une pluie d'occurrence **centennale** avec utilisation de la méthode de transformation pluie/débit dite du « réservoir linéaire » pour une durée de pluie **de 120 mn**.

Les ouvrages de rétention seront équipés en sortie d'un dispositif permettant d'assurer, avant la surverse par les déversoirs, un rejet à un débit de fuite maximum de :

- Débit biennal avant aménagement en cas d'exutoire identifié (cours d'eau, thalweg ou fossé récepteur).
- 15 L/s/hectare de surface imperméabilisée en cas d'absence d'exutoire clairement identifié, avec un diamètre minimum de l'orifice de fuite de 60 mm.
- Pour les volumes complémentaires retenus, fonctions de la capacité des exutoires et des contraintes imposées propres à chaque opération.

Le point de rejet étant bien identifié (vallon en aval du terrain du projet et du bassin de rétention de la Zone Industrielle existant), la régulation portera sur la prise en compte d'un débit centennal à l'état projeté en entrée du bassin écrêteur avec en sortie, la valeur du débit biennal actuel (avant aménagement) issu de ce même bassin versant.

Le dimensionnement du bassin de rétention est réalisé au travers de modélisations hydrologiques et hydrauliques. La transformation pluie-débit est effectuée avec la méthode du « réservoir linéaire » associée à des pluies de projet « double triangle » construites selon la méthode de Normand.

La commune de La Farlède demande un dimensionnement des dispositifs selon la méthodologie et les règles de la MISEN 83, c'est à dire un volume minimum de rétention répondant au minimum de $100 \, \text{L/m}^2$ imperméabilisé.

OBJET: Notice d'incidences

5.2. TYPE ET EMPLACEMENT DU BASSIN ECRETEUR RET_{BV COLLECTE}

L'emplacement du bassin de rétention RET_{BV Collecté} est présenté en figure 14. Il sera enterré et réalisé en béton étanche à parois verticales sous le parking extérieur au Sud-Est du terrain du projet, sa surface utile en fond sera de 1.440 m².

La vidange du bassin sera gravitaire vers le vallon existant en aval du projet, à proximité de la voie ferrée. Ce rejet devra faire l'objet d'un accord préalable du gestionnaire du réseau concerné (accord en annexe V).

5.3. AJUTAGES DE REGULATION DES DEBITS

Le débit de fuite du bassin sera régulé au travers d'ajutages cylindriques fonctionnant en régime dénoyé à l'aval. Ce débit répond, pour l'ajutage, à une loi du type :

$$Q = n.k.S\sqrt{2g.h}$$
Avec:

- S : surface de l'orifice (m²)

- $g: 9.81 \text{ m/s}^2$

- h : charge sur l'orifice mesuré du niveau amont du plan d'eau jusqu'au centre de gravité de l'orifice (m)
- k : coefficient d'ajutage égal à 0,62 pour un ajutage arasé dans le bassin et réalisé en mince paroi.
- n : Nombre d'ajutages de même diamètre. L'ajutage sera posé horizontalement ;
- En sortie de l'ajutage, les écoulements donneront dans un compartiment muni d'un regard afin d'assurer l'entretien des ouvrages par l'aval.

L'ajutage du bassin de rétention RET_{BV Collecté} est arasé à la paroi du bassin de diamètre Ø 170 mm.

Relation Hauteur - Volume - Débit

La loi de vidange et de stockage des volumes dans le bassin en fonction des hauteurs d'eau est fournie dans le tableau ci-après, et les simulations hydrologiques dans le tableau suivant.

Hauteur d'eau	Volume stocké (m³)	Débit en sortie en L/s
maximale (m)	Surface en fond = 1.440 m^2	Ajutage arasé Ø 170 mm
0,00	0	0
0,20	288	21
0,40	576	35
0,60	864	45
0,80	1.152	53
1,00	1.440	60
1,20	1.728	66
1,40	2.016	71
1,60	2.304	77
1,80	2.592	82
2,00	2.880	86
2,07	2.981	88

Tableau 13 : Loi hauteur / volume / débit du bassin écrêteur du projet.

OBJET: Notice d'incidences

Simulations sur modèle mathématique pluie – débit

A l'état projeté, les simulations réalisées sur modèle pluie – débit mènent aux résultats suivants :

Précipitations	Débit d'entrée	Débit de fuite	Volume de régulation	Hauteur de régulation
	(L/s)	(L/s)	(m^3)	(m)
P 100, 6 minutes	1.389	65,1	1.694	1,18
P 100, 15 minutes	1.312	68,5	1.864	1,26
P 100, 30 minutes	1.131	73,2	2.110	1,47
P 100, 60 minutes	913	73,8	2.141	1,49
P 100, 2 heures	601	82,4	2.643	1,84
P 100, 3 heures	431	81,8	2.600	1,81
P 100, 6 heures	346	87,8	2.981	2,07
P 100, 12 heures	201	80,7	2.535	1,76

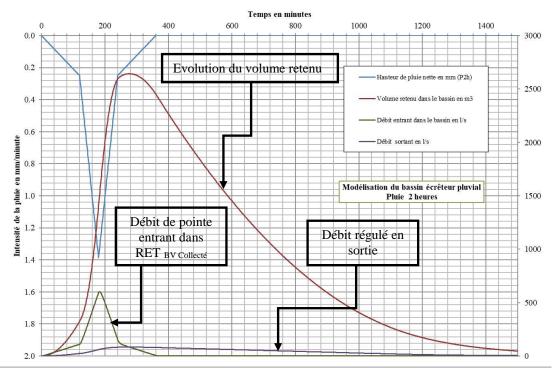
Tableau 14 : Simulations de fonctionnement du bassin écrêteur du projet. Débits futurs de période de retour T = 100 ans

Synthèse des calculs :

A l'état projeté, le débit centennal issu du bassin versant BV Collecté après régulation sera de : $\mathbf{Q}_{100 \text{ régulé}} = 88 \text{ L/s}$.

Sans régulation, le débit centennal en sortie de ce bassin versant serait de 1.389 L/s.

La régulation des débits atteint donc son but en ramenant le débit centennal issu du bassin versant du projet à un débit de fuite égal au débit biennal actuel de ce même bassin versant ($Q_{2 \text{ ans actuel BV Projet}} = 88 \text{ L/s}$).


Le volume utile du bassin, de 2.981 m³ répond à un ratio de 2.981 / 26.815 m² x 1.000 = 111 L/m² imperméabilisé supérieur au ratio minimum exigé dans le cadre du document MISEN 83 (100 L/m² imperméabilisé).

L'évacuation du débit régulé du bassin et le fonctionnement des surverses de sécurité seront assurés gravitairement.

La position de principe, le plan et la coupe de principe du bassin écrêteur RET _{BV Collecté} sont présentés en figure 14, 15 et 16.

A titre d'exemple, La régulation des pluies centennales de 2 heures par le bassin écrêteur est illustrée ci-dessous :

Hydrogrammes calculés en entrée et en sortie du bassin écrêteur RET BV Collecté – P 100 ans 2 heures.

5.4. DIMENSIONNEMENT HYDRAULIQUE DE LA SURVERSE DE SECURITE

Pour éviter tout débordement incontrôlé du bassin écrêteur, il est nécessaire de réaliser un ouvrage capable d'évacuer le débit cinq-centennal projeté non régulé. Une surverse de sécurité sera mise en place pour le bassin écrêteur RET BV Collecté :

 Une surverse d'une longueur de 10 m permettra l'évacuation du débit cinq-centennal non régulé vers un fossé enherbé à créer. Ce fossé conduira le débit non régulé vers le vallon en aval du projet.

La MISEN 83 préconise que le débit cinq-centennal soit calculé avec un coefficient multiplicateur minimal de 1,5 s'appliquant sur le débit centennal, soit :

Pour RET BV Collecté:

$$Q_{500} = 1.5 \times 1.389 = 2.083 \text{ m}^3/\text{s}$$

L'évacuation des débits se fera au travers d'un seuil épais. Le passage des débits sur le seuil répond à une loi du type :

$$Q = C \cdot L \cdot H^{3/2}$$

Avec : Q : débit centennal projeté

$$C = \mu \sqrt{2g} = 4,429 \cdot \mu$$

 μ = coefficient de débit. La valeur adoptée est μ = 0,34.

L : Longueur déversante

H: Charge sur le déversoir.

	Surverse de sécurité
Débit à faire transiter	Débit de 2,083 m ³ /s
Charge hydraulique	0,35 m
Revanche maintenue au-dessus de la cote des eaux de surverse	0,10 m
Hauteur totale (charge + revanche)	0,45 m
Longueur de la surverse	10 m
Exutoire de la surverse	Fossé enherbé à créer Vers le vallon en aval du projet

Tableau 15 : Caractéristiques de la surverse de sécurité du bassin écrêteur.

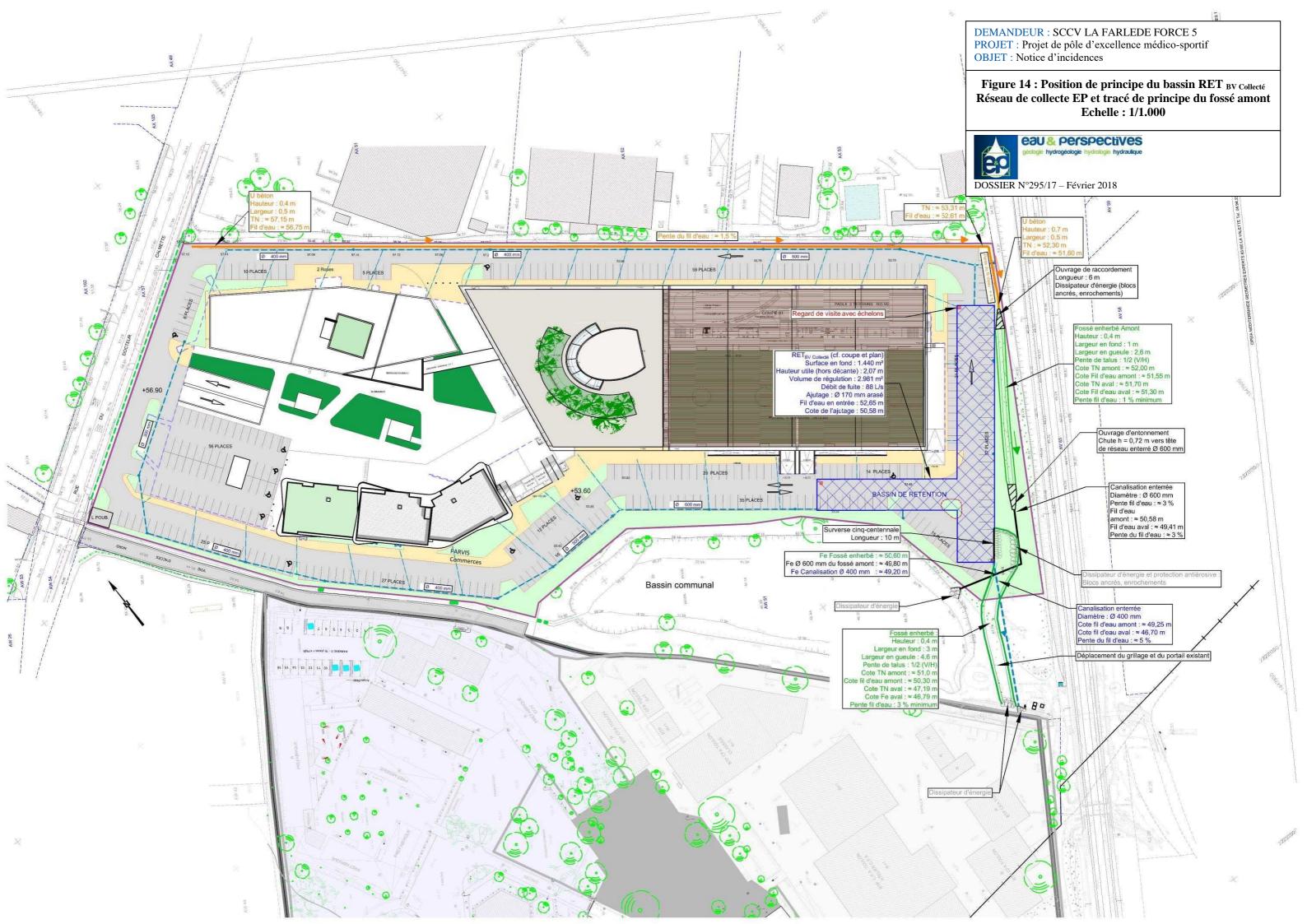
Caractéristiques du fossé d'évacuation du débit de surverse cinq-centennal

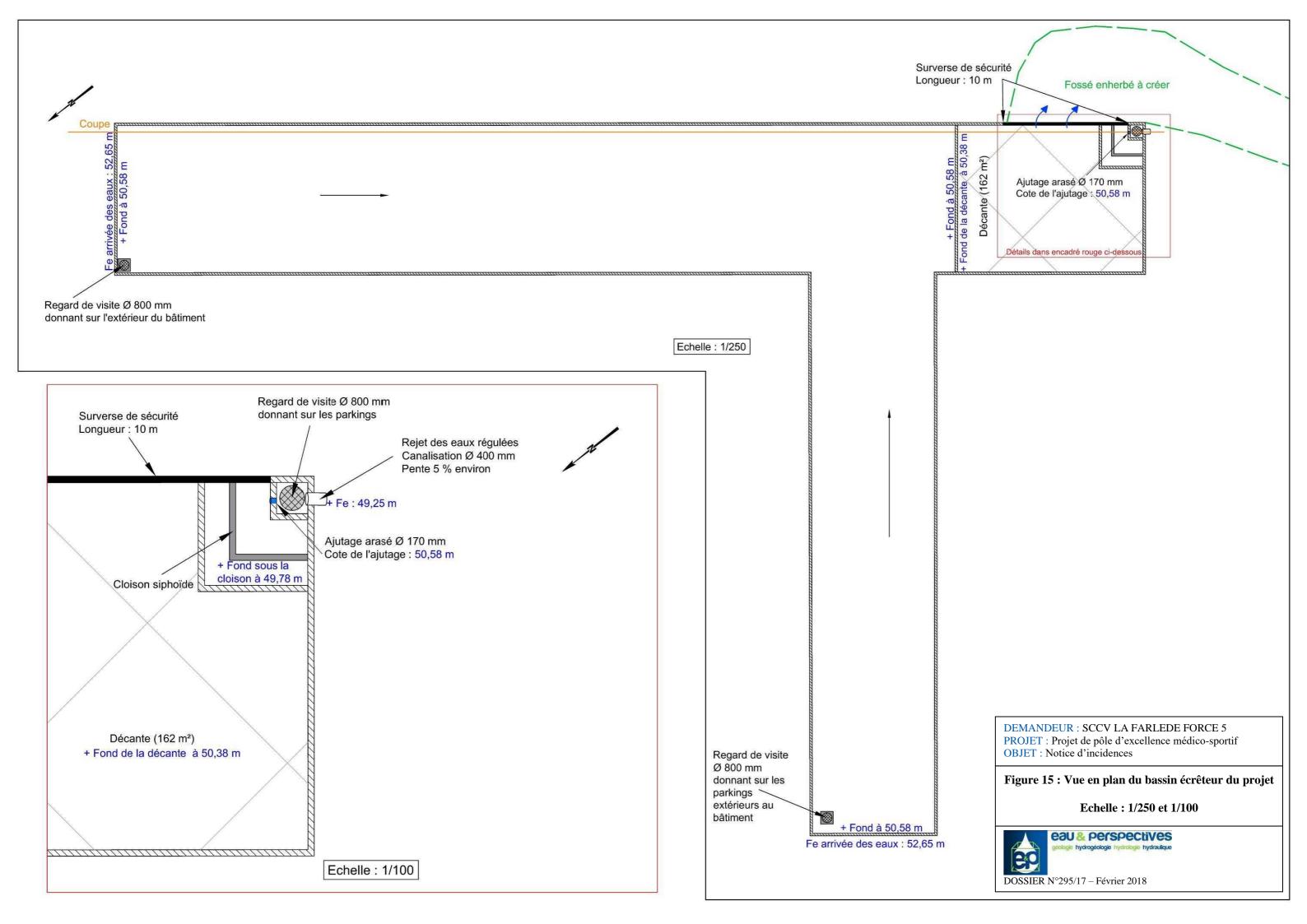
Afin de permettre l'évacuation des eaux de surverse du bassin écrêteur du projet, un fossé enherbé sera à créer au droit et en aval du bassin. Ce fossé conduira les eaux non régulées vers le vallon situé en aval du projet.

Le débit de pointe cinq-centennal du bassin versant BV Collecté est de 2,083 m³/s.

Le fossé enherbé présentera les caractéristiques suivantes :

Largeur en fond: 3 m
Profondeur: 0,4 m
Pente de talus: 1/2 (V/H)

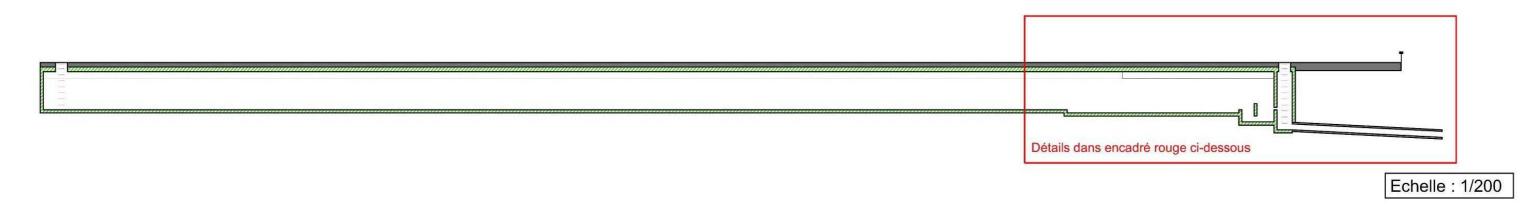

- Largeur hydraulique minimale en tête : 4,6 m


- Pente du fil d'eau : 3 % minimum

Un ouvrage dissipateur d'énergie (enrochements, blocs ancrés...) sera mis en place au droit du rejet des eaux de surverse avant le fossé enherbé et avant d'arriver dans le lit du vallon.

La position de principe et la coupe de principe du fossé enherbé sont respectivement présentées en figure 14 et 17.

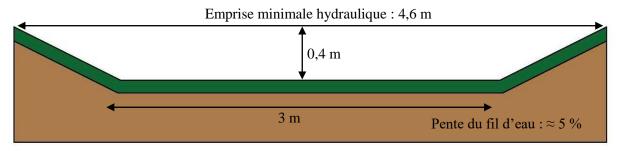
Vue en coupe du bassin écrêteur RET BV Collecté


DEMANDEUR : SCCV LA FARLEDE FORCE 5 PROJET : Projet de pôle d'excellence médico-sportif

OBJET : Notice d'incidences

Figure 16 : Coupe du bassin écrêteur du projet

Echelle: 1/200 et 1/70



Garde corps Recouvrement pour les zones de Surverse de sécurité cinq-centennale Regard de visite Ø 800 mm stationnements et de circulation Longueur: 10 m avec échelons 53,70 m Stationnements Sous-face du bassin : 53,10 m h: 0,45 m Ouverture donnant sur fossé enherbé Ajutage arasé Ø 170 mm Cote de l'ajutage : 50,58 m Cloison siphoïde Cote de la surverse Hauteur utile: 2,07 m de sécurité : 52,65 m h: 0,94 m Fond du bassin : 50,58 m Décante h : 0,2 m 162 m² 0,8 m Fond de la cloison : Fe : 49,78 m En sortie du bassin : Fe : 49,25 m Canalisation Ø 400 m à ≈ 5 % Sortie des eaux régulées vers le vallon Echelle: 1/70

Figure 17 : Coupe du fossé enherbé pour une surverse cinq-centennale

Echelle: 1/30

Pente de talus : 1/2 (V/H)

5.5. REGARDS DE VISITE ET ACCESSIBILITE

Afin de permettre l'entretien de l'ouvrage, des regards munis d'échelons permettront l'accès au bassin. Deux regards au minimum, un dans le compartiment de stockage du bassin et l'autre situé dans le compartiment en aval de l'ajutage sont à prévoir. Ces regards devront être facilement accessibles.

5.6. ETANCHEITE ET CONCEPTION

Le bassin écrêteur sera entièrement étanche afin d'éviter les circulations d'eau en profondeur et à proximité des fondations des constructions projetées (tassements, gonflements ou phénomènes de sous pression).

L'implantation, la stabilité, l'éventuelle nécessité de lestage et la solidité de l'ouvrage feront l'objet d'une validation d'un géotechnicien et d'un ingénieur béton.

5.7. SYNTHESE DES INCIDENCES SUR LES DEBITS PLUVIAUX

Les incidences des aménagements réalisés par la SCCV LA FARLEDE FORCE 5 sur les débits en sortie du terrain de projet après mise en place des mesures de réduction d'impact sont exposées dans le tableau ci-dessous.

Débit actuel	Débit à l'état projeté (sans régulation)	Débit à l'état projeté avec régulation
Q 100ans	Q 100ans	Q 100ans
441 L/s	1.389 L/s	88 L/s

Tableau 16 : Comparaison des débits actuels et futurs issus des terrains aménagés du projet.

A l'état projeté, le débit total en sortie du projet par SCCV LA FARLEDE FORCE 5 après régulation au travers du bassin écrêteur RET _{BV Collecté} sera de 88 L/s face à un évènement centennal. Ce débit régulé est égal au débit biennal actuel du terrain du projet et est compatible avec les capacités hydrauliques des ouvrages et des fossés existants à l'aval.

5.8. Traitement de la pollution chronique

En matière de pollution des eaux de ruissellement, les écoulements issus du lessivage des chaussées et des parkings après une pluie seront vecteurs d'une pollution chronique. Cette pollution est liée au trafic des véhicules à moteurs (gommes, métaux lourds, résidus de combustion, hydrocarbures et huiles). Cette pollution est essentiellement présente sous forme particulaire et essentiellement liée aux Matières En Suspension (MES), donc décantable.

Le bassin écrêteur sera donc aménagé afin de jouer un rôle de dépollution des eaux de ruissellement. Le piégeage des matières en suspension sera assuré au moyen d'une cloison siphoïde plongeant dans le bassin face à son ajutage et formant ainsi une décante.

La pluie prise en compte pour le traitement de la pollution chronique est la pluie de période de retour T=2 ans, conformément aux « Règles générales à prendre en compte dans la conception et la mise en œuvre des réseaux et ouvrages pour le département du Var » de janvier 2014 et pénalisante car entrainant un lessivage important des chaussées tout en conservant une capacité de dilution limitée.

OBJET: Notice d'incidences

Le calcul de surface minimale de décantation est présenté dans le tableau ci-après :

	Q _{2ans projet} en m3/s	Hauteur utile du bassin en m	Surface minimale pour traiter la pollution chronique en m ²	Surface utile retenue pour le traitement en m²
RET BV Collecté	0,706	2,07	162	162

Tableau 17: Superficie de décantation à prévoir pour le bassin écrêteur.

(Rendement de 60 %)

La surface de traitement est issue de l'application du guide technique SETRA « Pollutions d'origine routière » d'août 2007. La superficie du bassin à la cote de l'ajutage (superficie de la décante) est donnée par la relation suivante :

$$S_b = \frac{0.8 \times Q_T - Q_f}{V_s \times Ln \left(0.8 \times \frac{Q_T}{Q_f}\right)} \times 3600$$

Avec : S_b : superficie de la décante, en m^2 ,

Q_T : débit de pointe pour la période de retour de traitement, en m³/s

Q_f: débit de fuite du bassin à mi-hauteur utile, en m³/s

 V_s : vitesse de sédimentation des MES : 5 m/h pour un rendement d'abattement de 60 %.

6. MODALITES DE COLLECTE ET DE REJET DES RUISSELLEMENTS

6.1. COLLECTE DES RUISSELLEMENTS JUSQU'AU BASSIN ECRETEUR

Tous les ruissellements issus des aménagements inclus dans le périmètre du bassin versant BV Collecté seront collectés par un réseau à créer et dirigés vers le bassin écrêteur de l'opération.

Le principe de collecte sera le suivant :

- La pente des parkings sera légèrement orientée en direction des grilles avaloir afin de collecter les ruissellements en surface.
- Les réseaux enterrés seront munis de grilles avaloir en nombre suffisant au niveau de la voirie interne (voies de circulation et places de stationnement).
- Les ruissellements issus des toitures des bâtiments seront collectés par des gouttières ou tout autre dispositif adapté et dirigés vers le réseau de collecte.

Les canalisations de collecte et d'amenée des eaux seront dimensionnées pour assurer le transit du débit centennal projeté.

Les accès au parkings souterrains devront être protégés des possibles entrées d'eau par un seuil calé à 0,2 m au-dessus de la voie d'accès.

Au pied des rampes d'accès aux parkings souterrains, une grille avaloire évacuée par des pompes de relevage vers le bassin de rétention sera mise en place.

Le plan de principe du réseau de collecte des eaux pluviales interne au projet est présenté en figure 14 (plan VRD du BET CERRETTI).

6.2. REJET DES EAUX REGULEES ET DE SURVERSE EN SORTIE DU BASSIN ECRETEUR

Le rejet des eaux régulées en sortie du bassin écrêteur se fera gravitairement au travers d'un ajutage arasé de diamètre \emptyset 170 mm puis au travers d'une canalisation \emptyset 400 mm jusqu'au vallon situé en aval du projet (accord écrit présenté en annexe V).

Un ouvrage dissipateur d'énergie (enrochements, blocs ancrés...) sera mis en place au droit du raccordement entre la buse Ø 400 mm et le vallon en aval du projet.

En cas d'obstruction de l'ajutage, le bassin se remplira puis surversera au travers d'un seuil dans un fossé enherbé d'évacuation dimensionné pour un débit cinq-centennal non régulé (voir le chapitre 5.4.). Ces écoulements rejoindront ensuite le vallon en aval du projet.

7. COLLECTE ET DETOURNEMENT DES EAUX PROVENANT DU BASSIN VERSANT AMONT

Afin de ne pas augmenter significativement le volume de régulation du bassin écrêteur projeté et pour protéger les futurs aménagements des ruissellements provenant de l'amont, un fossé de colature sera réalisé en limite Nord-Est et Sud-Est du terrain aménagé du projet et renverra les écoulements vers le bassin écrêteur existant de la Zone Industrielle, sans transit par le bassin écrêteur du projet.

L'ouvrage de colature du bassin versant BV Amont présentera différentes sections :

- Une section en U étanche d'une largeur 0,5 m et d'une hauteur variant de 0,4 m à 0,7 m et présentant une pente de fil d'eau d'environ 1,5 % sur tout le linéaire entre le terrain du projet et les bâtiments situés au Nord-Est (limite de propriété).
- En limite Sud-Est (limite avec la voie ferrée) la section du fossé amont passera en fossé trapézoïdal enherbé d'une largeur en fond de 1 m et d'une hauteur de 0,4 m, avec des pentes de talus à 1/2 (V/H) et une pente de fil d'eau à environ 2 %. Ce changement de section s'effectuera au travers d'un ouvrage de raccordement d'une longueur de 6 m.
- En limite Sud et à proximité du bassin écrêteur de l'opération, un ouvrage d'entonnement d'une longueur de 5 m permettra le passage du fossé amont enherbé en canalisation de diamètre Ø 600 mm à 6 % environ. La canalisation sera enterrée et passera sous le fossé enherbé pour rejoindre le bassin écrêteur communal (voir la figure 14).

Les transitions entre les différentes sections de l'ouvrage de colature se fera au travers d'ouvrages de raccordement ou d'entonnement destinés à minimiser les pertes de charge aux changements de section, dont la longueur minimale L répondra à une règle du type :

$$L = (l_2 - l_1) \times 2,5$$

Un ouvrage dissipateur d'énergie sera mis en place avant raccordement au bassin écrêteur existant (enrochements, blocs ancrés...).

Le tracé de principe de l'ouvrage collectant les eaux du bassin versant BV Amont est présenté en figure 14.

8. MESURE D'ACCOMPAGNEMENT EN PHASE TRAVAUX

Le service en charge de la Police de l'Eau et l'Agence Française pour la Biodiversité, seront prévenus du démarrage et de l'achèvement des travaux avec un préavis de quinze jours.

Toute modification du projet sera portée à la connaissance des services préfectoraux préalablement à leur réalisation.

Durant la phase de travaux, les dispositions suivantes seront adoptées pour éviter les pollutions chroniques ou accidentelles des eaux superficielles ou souterraines :

- Les opérations de nettoyage, entretien, réparation et ravitaillement des engins de chantier et du matériel seront réalisées sur des aires étanches.
- Aucun rejet de matériaux, laitance de béton, bétons, hydrocarbures, déblais ou matériaux divers ne sera fait dans le milieu naturel. La vidange et l'entretien des engins seront réalisés sur les sites aménagés à cet effet;
- Tout incident entraînant une aggravation qualitative du rejet sera immédiatement porté à la connaissance du service chargé de la police de l'eau ;
- Les déchets solides et liquides générés par le chantier seront évacués vers des aires de dépôt ou de traitement extérieures au site et agréées pour cet usage.

Durant la phase de terrassement, un bassin de décantation sera réalisé et les pentes de terrain amèneront la totalité des écoulements du chantier vers ce bassin.

Le bassin de décantation de la phase travaux sera muni d'un filtre à paille en partie médiane et en sortie.

Lors des travaux, les bassins écrêteurs seront réalisés avant réalisation des imperméabilisations.

Planning prévisionnel:

La réalisation des travaux et leur démarrage ne sont envisageables qu'une fois le Dossier Loi sur l'Eau validé par un récépissé de déclaration.

Ne s'agissant pas de travaux sur un milieu aquatique, aucune contrainte de date de démarrage ou de période de travaux n'est prise en compte.

Les travaux débuteront par la réalisation d'une clôture infranchissable permettant de sécuriser le chantier et les zones de terrassement, puis de construction.

Il sera ensuite procédé prioritairement aux terrassements des réseaux pluviaux projetés en aval du bassin, pour disposer de l'exutoire prévu, puis aux terrassements du bassin de rétention avant toute minéralisation des sols du bassin versant correspondant, permettant ainsi de garantir qu'il n'y aura aucune augmentation de débit dans les réseaux pluviaux à l'aval du projet.

Les terres excavées seront évacuées sur un site autorisé.

9. SUIVI ET ENTRETIEN DES OUVRAGES

Entretien du réseau pluvial primaire

La surveillance des installations à l'intérieur du projet portera principalement sur un entretien régulier du réseau de collecte d'eau pluviale (désobstruction des collecteurs, des grilles, des avaloirs et des gouttières).

Un contrôle de l'état du réseau pluvial sera à réaliser deux fois par an au minimum et après chaque épisode pluvieux important.

Entretien du bassin de rétention enterré

L'entretien du bassin écrêteur portera sur les points suivants :

- curage de la décante ;
- nettoyage régulier des sédiments et des flottants dans le bassin.

Une visite de l'ouvrage devra être réalisée deux fois par an au minimum (début du printemps et d'automne) et après chaque épisode pluvieux important.

Entretien des ouvrages de traitement de la pollution chronique

Le compartiment de piégeage de la pollution chronique par cloison siphoïde faisant office de séparateur à hydrocarbures sera régulièrement contrôlé et vidangé par une entreprise agréée pour ce type d'opération.

10. <u>INCIDENCES DU PROJET ET COMPATIBILITE AVEC LE S.D.A.G.E.</u>

La compatibilité du projet présenté par la SCCV LA FARLEDE FORCE 5 sur la commune de LA FARLEDE, vis à vis des 9 orientations fondamentales du Schéma Directeur d'Aménagement et de Gestion des Eaux du bassin Rhône – Méditerranée 2016-2021 a été vérifiée.

- OF0: S'adapter aux effets du changement climatique. Sans objet
- OF1: Privilégier la prévention et les interventions à la source pour plus d'efficacité.

 Les augmentations des débits ruisselés imputables aux imperméabilisations projetées seront limitées par la mise en place d'un bassin écrêteur de débit.
- OF2: Concrétiser la mise en œuvre du principe de non-dégradation des milieux aquatiques. Le site ne présente pas de zone humide temporaire ou permanente et aucun forage n'est envisagé par le projet. L'emprise importante du bassin écrêteur projeté permettra une décantation des MES avant rejet des eaux.
- OF3: Intégrer les dimensions sociales et économiques dans la mise en œuvre des objectifs environnementaux.
 Sans objet.
- OF4 : Renforcer la gestion locale et assurer la cohérence entre aménagement du territoire et gestion de l'eau.
 - La limitation des débits ruisselés permet de réduire les apports lors des pointes de précipitations, et donc réduire le risque d'inondation à l'aval.
- OF5 : Lutter contre les pollutions en mettant la priorité sur les pollutions par les substances dangereuses et la protection de la santé.
 - Les eaux issues du lessivage des voies et parkings seront traitées au travers d'un bassin écrêteur muni d'une décante et d'une cloison siphoïde afin de retenir les MES et les hydrocarbures. Les débits pluviaux issus des surfaces imperméabilisées projetées seront régulés face à une précipitation de période de retour centennale.
 - En phase de chantier, les installations en surface (citernes, stockages) ainsi que les véhicules seront disposés de façon à éviter tout déversement accidentel de produit polluant dans le milieu hydraulique superficiel ou souterrain.
- OF6: Préserver et redévelopper les fonctionnalités naturelles des bassins et des milieux aquatiques.
 Sans objet.
- OF7 : Atteindre l'équilibre quantitatif en améliorant le partage de la ressource et en anticipant l'avenir.
 Sans objet.
- OF8 : Gérer les risques d'inondations en tenant compte du fonctionnement naturel des cours d'eau.

Les mesures compensatoires mises en œuvre permettront d'annuler l'impact du projet sur les crues dans les réseaux pluviaux à l'aval. La mise en place d'un bassin écrêteur limitera les débits ruisselés en sortie du programme « La Farlède Force 5 ».

OBJET: Notice d'incidences

Masse d'eau concernée par le programme :

• Masse d'eau côtière :

Elle est caractérisée par un bon état quantitatif et un mauvais état chimique mais avec un objectif de bon état pour 2021.

MASSE D'EAU côtière		ÉTAT ECOLOGIQUE		ÉTAT CHIMIQUE	
Numéro	NOM	Objectif d'état Echéance		Objectif d'état	Echéance
FRDC 07g	Cap Cepet – Cap de Carqueiranne	Bon état	2015	Bon état	2021

Extrait des caractéristiques de la masse d'eau côtière.

• Masse d'eau souterraine :

Elle est caractérisée par un bon état quantitatif et un bon état chimique.

MASSE D'EAU souterraine		ÉTAT QUANTITATIF		ÉTAT CHIMIQUE	
Numéro	NOM	Objectif d'état Echéance		Objectif d'état	Echéance
FRDG 514	Formations variées de la région de Toulon	Bon état	2015	Bon état	2015

Extrait des caractéristiques des masses d'eau souterraines.

Masse d'eau de surface :

Elle est caractérisée par un mauvais état écologique mais avec un objectif de bon état pour 2021 et un bon état chimique.

MASSE D'EAU de surface		ÉTAT ECOLOGIQUE		ÉTAT CHIMIQUE	
Numéro	NOM	Objectif d'état	Echéance	Objectif d'état	Echéance
FRDR115	L'Eygoutier	bon	2021	Bon état	2015

Extrait des caractéristiques des masses d'eau de surface

Le projet n'est pas concerné par un Périmètre de Protection de captage d'AEP (annexe IV).

Le projet ne prévoit aucun rejet de substance polluante et des mesures seront prises en phases de chantier pour éviter toute pollution des eaux de ruissellement (bassin de rétention créé au démarrage du chantier et servant de zone de décantation des eaux de ruissellement, équipé de filtre à paille dans l'attente de la réalisation des dispositifs de régulation et cloisons siphoïdes).

D'après le site gesteau.fr, il existe un Schéma d'Aménagement et de Gestion des Eaux SAGE*, celui du Gapeau. Le SAGE est en cours de validation, il n'y a pas eu d'enquête publique. Il n'est actuellement pas en fonction et n'existe pas encore de règlement.

DEMANDEUR: SCCV LA FARLEDE FORCE 5

PROJET: Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Notice d'incidences

Un contrat de milieu** porte sur le secteur du projet « Rade de Toulon (2^{ième}) », il est signé et en cours d'exécution d'après le site http://www.gesteau.fr/contrat/rade-de-toulon-2ieme

La liste des enjeux du contrat de milieu « Rade de Toulon (2^{ième}) » consiste :

- La reconquête du bon état écologique dans les différents compartiments et écosystèmes de la rade.
- La maîtrise des apports et des contaminants chimiques et organiques du bassin versant.
- La maîtrise des flux hydrauliques du bassin versant lutte contre les inondations.
- La préservation et la restauration de la qualité des écosystèmes aquatiques terrestres et marins.
- La valorisation des zones naturelles à l'interface terre/mer et le long des rives des cours d'eau.
- La concertation et la participation de tous les acteurs.

Le projet ne va à l'encontre d'aucun enjeu du contrat de milieu « Rade de Toulon (2ième) ».

11. DISPOSITIONS REGLEMENTAIRES

11.1. <u>Contribution du projet a la realisation, des objectifs vises a l'article L211-1 du Code de l'Environnement</u>

Article L211-1

Modifié par LOI n°2016-1087 du 8 août 2016 - art. 119

I.-Les dispositions des chapitres ler à VII du présent titre ont pour objet une gestion équilibrée et durable de la ressource en eau ; cette gestion prend en compte les adaptations nécessaires au changement climatique et vise à assurer :

1° La prévention des inondations et la préservation des écosystèmes aquatiques, des sites et des zones humides ; on entend par zone humide les terrains, exploités ou non, habituellement inondés ou gorgés d'eau douce, salée ou saumâtre de façon permanente ou temporaire ; la végétation, quand elle existe, y est dominée par des plantes hygrophiles pendant au moins une partie de l'année ;

Le projet n'est pas implanté dans une zone humide.

2° La protection des eaux et la lutte contre toute pollution par déversements, écoulements, rejets, dépôts directs ou indirects de matières de toute nature et plus généralement par tout fait susceptible de provoquer ou d'accroître la dégradation des eaux en modifiant leurs caractéristiques physiques, chimiques, biologiques ou bactériologiques, qu'il s'agisse des eaux superficielles, souterraines ou des eaux de la mer dans la limite des eaux territoriales :

Les eaux pluviales seront traitées au travers d'un bassin de rétention par un décanteur avant rejet dans le réseau pluvial projeté en aval des constructions.

3° La restauration de la qualité de ces eaux et leur régénération ;

Les eaux pluviales seront traitées au travers d'un bassin de rétention par un décanteur avant rejet dans le réseau pluvial projeté en aval des constructions.

4° Le développement, la mobilisation, la création et la protection de la ressource en eau ;

Sans objet.

5° La valorisation de l'eau comme ressource économique et, en particulier, pour le développement de la production d'électricité d'origine renouvelable ainsi que la répartition de cette ressource ;

Sans objet

DEMANDEUR: SCCV LA FARLEDE FORCE 5

PROJET: Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

OBJET: Notice d'incidences

6° La promotion d'une utilisation efficace, économe et durable de la ressource en eau ;

Sans objet

7° Le rétablissement de la continuité écologique au sein des bassins hydrographiques.

Sans objet

Un décret en Conseil d'Etat précise les critères retenus pour l'application du 1°.

II.-La gestion équilibrée doit permettre en priorité de satisfaire les exigences de la santé, de la salubrité publique, de la sécurité civile et de l'alimentation en eau potable de la population. Elle doit également permettre de satisfaire ou concilier, lors des différents usages, activités ou travaux, les exigences :

1° De la vie biologique du milieu récepteur, et spécialement de la faune piscicole et conchylicole ;

Le rejet des eaux pluviales du projet se fera dans un vallon, à l'amont direct de sa traversée sous une voie ferrée. Ce vallon rejoint le Ruisseau de Lambert 1 km environ en aval du terrain du projet, et est situé dans le bassin versant de l'Eygoutier.

2° De la conservation et du libre écoulement des eaux et de la protection contre les inondations ;

Les écoulements pluviaux sur les terrains aménagés du projet seront gérés de manière à ce que ceux-ci rejoignent le bassin écrêteur projeté pour y être régulés.

La régulation des débits issus du projet permettra de limiter ces apports dans les exutoires naturels et ainsi participer à la réduction des risques d'inondation à l'aval.

3° De l'agriculture, des pêches et des cultures marines, de la pêche en eau douce, de l'industrie, de la production d'énergie, en particulier pour assurer la sécurité du système électrique, des transports, du tourisme, de la protection des sites, des loisirs et des sports nautiques ainsi que de toutes autres activités humaines légalement exercées.

Sans objet.

11.2. <u>Contribution du projet a la realisation, des objectifs vises a l'article L211-10</u> du Code de l'Environnement

Article L211-10

Modifié par Ordonnance n°2011-91 du 20 janvier 2011 - art. 6

Nonobstant les dispositions de l'article L. 413-1 du code minier, les échantillons, documents et renseignements intéressant la recherche, la production ou le régime des eaux souterraines tombent immédiatement dans le domaine public.

Les dispositions de l'article L211-10 seront respectées.

L'Agence Française pour la Biodiversité depuis le 1^{er} janvier 2017 sera prévenue du démarrage et de l'achèvement des travaux avec un préavis de quinze jours.

SCCV LA FARLEDE FORCE 5

Projet de pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 » ANNEXES

ANNEXES:

Annexe I : Formulaire d'évaluation simplifiée des incidences Natura 2000

Annexe II : Engagement écrit concernant les modalités d'entretien

Annexe III: Fiche synthétique

Annexe IV : Autorisation de rejet des eaux pluviales

Autorisation de raccordement au réseau EU communal

Annexe V : Carte des périmètres de protection AEP

LIEU:

LA FARLEDE Rue du Docteur Calmette

Annexe I : Formulaire d'évaluation simplifiée des incidences Natura 2000

PRÉFECTURE DE LA RÉGION PROVENCE - ALPES - CÔTE D'AZUR

FORMULAIRE D'EVALUATION SIMPLIFIEE DES INCIDENCES NATURA 2000

Par aui?

Ce formulaire est à remplir par le **porteur du projet**, en fonction des informations dont il dispose (cf. p. 9 : » ou trouver l'info sur Natura 2000 ? »). Il est possible de mettre des points d'interrogation lorsque le renseignement demandé par le formulaire n'est pas connu.

Ce formulaire fait office d'évaluation des incidences Natura 2000 lorsqu'il permet de conclure à l'absence d'incidence.

A quoi ça sert ?

Ce formulaire permet de répondre à la question préalable suivante : mon projet est-il susceptible d'avoir une incidence sur un site Natura 2000 ? Il peut notamment être utilisé par les porteurs de petits projets qui pressentent que leur projet n'aura pas d'incidence sur un site Natura 2000.

Le formulaire permet, par une analyse succincte du projet et des enjeux, d'exclure toute incidence sur un site Natura 2000. **Attention :** si tel n'est pas le cas et qu'une incidence non négligeable est possible, une évaluation des incidences plus poussée doit être conduite.

Pour qui?

Ce formulaire permet au **service administratif instruisant le projet** de fournir l'autorisation requise ou, dans le cas contraire, de demander de plus amples précisions sur certains points particuliers.

Coordonnées du porteur de projet :

Nom (personne morale ou physique) : SCCV LA FARLEDE FORCE 5

Commune (et département): TOULON (83)

Adresse: 1041 AVENUE DE DRAGUIGNANT - ZI LA GARDE LA BASTIDE VERTE -

BP 30022 - 83 087 TOULON CEDEX 9

Téléphone:04 83 99 46 49 Fax:

Email: ... contact@smartstrategygroupe.net

Nom du projet : Pôle d'excellence médico-sportif « LA FARLEDE FORCE 5 »

1 Description du projet, de la manifestation ou de l'intervention

Joindre si nécessaire une description détaillée du projet, manifestation ou intervention sur papier libre en complément à ce formulaire.

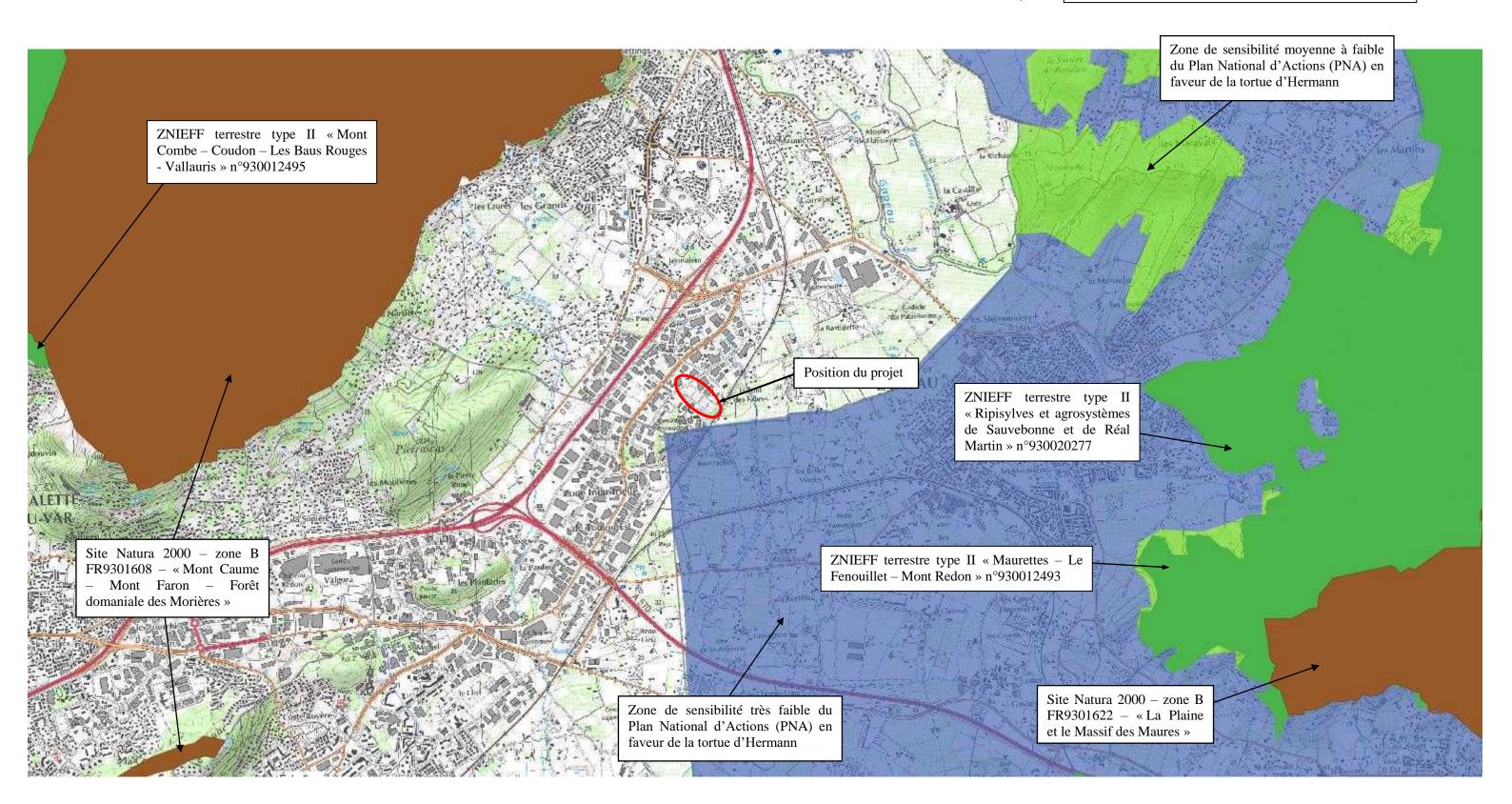
Nature du projet, de la manifestation ou de l'intervention

Préciser le type d'aménagement envisagé (exemple : canalisation d'eau, création d'un pont, mise en place de grillages, curage d'un fossé, drainage, création de digue, abattage d'arbres, création d'un sentier, manifestation sportive, etc.).

Le projet prévoit la création d'un pôle d'excellence médico-sportif comprenant un bâtiment d'activités sportives, un centre d'affaires, une résidence de services ainsi que des places de stationnements extérieurs et en sous-sols.

Mise en place d'un bassin écrêteur de débits pluviaux.

Localisation et cartographie


Joindre dans tous les cas une carte de localisation précise du projet, de la manifestation ou de l'intervention (emprises temporaires, chantier, accès et définitives) sur une photocopie de carte IGN au 1/25 000e et un plan descriptif du projet (plan de masse, plan cadastral, etc.).

Le projet est situé : Rue du Docteur Calmette Nom de la commune : LA FARLEDE N° Département : 83
En site(s) Natura 2000 \square n° de site(s) : (FR93)
Hors site(s) Natura 2000 ☒ A quelle distance ? A 2 km du site, n° de site(s) :(FR 9301608) « Mont Caume – Mont Faron – Forêt domaniale des Morières » A 4,3 km du site n° de site(s) :(FR 9301622) « La Plaine et le Massif des Maures »

CONTEXTE ENVIRONNEMENTAL

(Source : DREAL PACA – Géo-IDE Carto) Echelle : 1/25.000

Etendue du projet, de la manifestation ou de l'intervention

Emprises au sol temporaire et permanente de l'i connue) : (m2) ou classe de surface appropries correspondante) :	
□ < 100 m²	\Box 1 000 à 10 000 m² (1 ha)
□ 100 à 1 000 m²	■ > 10 000 m ² (> 1 ha)
- Longueur (si linéaire impacté) : (m.) - Emprises en phase chantier :Environ 29.050 - Aménagement(s) connexe(s) :	
Préciser si le projet, la manifestation ou l'interver (exemple : voiries et réseaux divers, parking, succinctement ces aménagements. Pour les manifestations, interventions : infrastructur logistique, nombre de personnes attendues.	zone de stockage, etc.). Si oui, décrire
Un bassin écrêteur des eaux pluviales. Création de points de collecte de réseau d'évacu	ation des eaux pluviales.
Durée prévisible et période envisagée des t l'intervention : - Projet, manifestation :	ravaux, de la manifestation ou de
⊠ diurne	
□ nocturne	
- Durée précise si connue : (jours, mo Ou durée approximative en cochant la case corre	•
□ < 1 mois	⊠ 1 an à 5 ans
□ 1 mois à 1 an	□ > 5 ans
- Période précise si connue :(de te Ou période approximative en cochant la(les) cas	•
▼ Printemps	🛚 Automne
⊠ Eté	Hiver
- Fréquence :	
□ chaque année	
□ chaque mois	
□ autre (préciser) :	

Entretien / fonctionnement / rejet

Préciser si le projet ou la manifestation générera des interventions ou rejets sur le milieu durant sa phase d'exploitation (exemple : traitement chimique, débroussaillage mécanique, curage, rejet d'eau pluviale, pistes, zones de chantier, raccordement réseaux...). Si oui, les décrire succinctement (fréquence, ampleur, etc.).

Le projet prévoit le rejet d'eaux pluviales dans le vallon en aval du programme « La Farlède Force 5 », à proximité de la voie ferrée, après régulation.

Budget Préciser le coût prévisionnel global du pro	
Coût global du projet :ou coût approximatif (cocher la case corre	espondante) :
□ < 5 000 €	. □ de 20 000 € à 100 000 €
□ de 5 000 à 20 000 €	⊠ > à 100 000 €
2 Définition de la zone d'	influence (concernée par le projet)
incidences d'un projet sur son environnemen bruit, rejets dans le milieu aquatique).	du projet et des milieux naturels environnants. Les t peuvent être plus ou moins étendues (poussières, e d'implantation. Pour aider à définir cette zone, il
Cocher les cases concernées et délimiter cette 1/50 000ème.	zone d'influence sur la carte au 1/25 000ème ou au
☐ Rejets dans le milieu aquatique	
☐ Pistes de chantier, circulation	
☐ Rupture de corridors écologiques (rupture d	le continuité écologique pour les espèces)
■ Poussières, vibrations	
□ Pollutions possibles	
☐ Perturbation d'une espèce en dehors de la z	zone d'implantation
■ Bruits	
□ Autres incidences	
3 Etat des lieux de la zo	ne d'influence
	nfluence (zone pouvant être impactée par le projet) eut avoir le projet ou manifestation sur cette zone.
PROTECTIONS:	
Le projet est situé en :	
☐ Réserve Naturelle Nationale	
☐ Réserve Naturelle Régionale	
☐ Parc National	
☐ Arrêté de protection de biotope	
☐ Site classé	
☐ Site inscrit	
$\hfill \square$ PIG (projet d'intérêt général) de protection	
□ Parc Naturel Régional	
$\ \square$ ZNIEFF (zone naturelle d'intérêt écologique	, faunistique et floristique)
☐ Réserve de biosphère	

 $\ \square$ Site RAMSAR

USAGES:

Cocher	les	cases	correspondantes	pour	indiquer	succinctement	quels	sont	les	usages	actuels	et
historia	ues	de la z	zone d'influence.									

	Aucun
	Pâturage / fauche
	Chasse
	Pêche
X	Sport & Loisirs (VTT, 4x4, quads, escalade, vol libre) : Terrains de sport.
	Agriculture
	Sylviculture
	Décharge sauvage
	Perturbations diverses (inondation, incendie)
	Cabanisation
	Construite, non naturelle : Terrain en partie construit (zones de stationnements, bâtiment).
	Autre (préciser l'usage) :

MILIEUX NATURELS ET ESPECES:

Commentaires:.....

Renseigner les tableaux ci-dessous, en fonction de vos connaissances, et joindre une <u>cartographie</u> <u>de localisation approximative des milieux et espèces</u>.

Afin de faciliter l'instruction du dossier, il est fortement recommandé de fournir quelques photos du site (sous format numérique de préférence). Préciser ici la légende de ces photos et reporter leur numéro sur la carte de localisation.

Photo A: Vue du terrain depuis le terrain amont au Nord du projet.

Photo B : Vue du terrain depuis le Sud-Est.

TABLEAU MILIEUX NATURELS:

typ	e d'habitat naturel	Cocher si présent	Commentaires
Milieux ouverts ou semi-ouverts	pelouse pelouse semi-boisée lande garrigue / maquis autre :		
Milieux forestiers	forêt de résineux forêt de feuillus forêt mixte plantation autre:		
Milieux rocheux	falaise affleurement rocheux éboulis blocs autre:		
Zones humides	fossé cours d'eau étang tourbière gravière prairie humide autre:		
Milieux littoraux et marins	Falaises et récifs Grottes Herbiers Plages et bancs de sables Lagunes autre:		
Autre type de milieu			

TABLEAU ESPECES FAUNE, FLORE:

Remplissez en fonction de vos connaissances :

Groupes d'espèces	Nom de l'espèce	Cocher si présente ou potentielle	Autres informations (statut de l'espèce, nombre d'individus, type d'utilisation de la zone d'étude par l'espèce)
Amphibiens, reptiles			
Crustacés			
Insectes			
Mammifères marins			
Mammifères terrestres			
Oiseaux			
Plantes			
Poissons			

4 Incidences du projet

Décrivez sommairement les incidences potentielles du projet dans la mesure de vos connaissances.

Destruction ou détérioration d'habitat (= milieu naturel) ou habitat d'espèce (type d'habitat et surface) :

Le terrain est en partie anthropisé et ne constitue pas un habitat recensé dans un des sites Natura 2000 les plus proches.

.....

Destruction ou perturbation d'espèces (lesquelles et nombre d'individus) :

A notre connaissance, aucune espèce recensée dans le site Natura 2000 le plus proche n'est présente sur les terrains du projet.

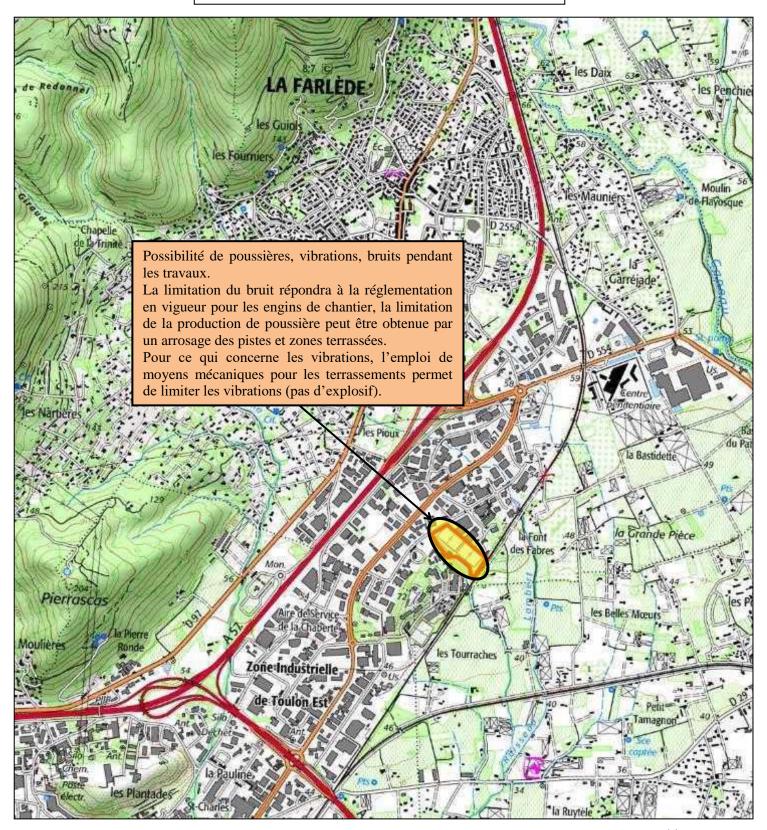
.....

Perturbations possibles des espèces dans leurs fonctions vitales (reproduction, repos, alimentation...):

Le terrain, ne présente pas à notre connaissance d'occupation par des espèces recensées dans les sites Natura 2000 les plus proches.

Conclusion

Il est de la responsabilité du porteur de projet de conclure sur l'absence ou non d'incidences de son projet.


A titre d'information, le projet est susceptible d'avoir une incidence lorsque :


- Une surface relativement importante ou un milieu d'intérêt communautaire ou un habitat d'espèce est détruit ou dégradé à l'échelle du site Natura 2000
- Une espèce d'intérêt communautaire est détruite ou perturbée dans la réalisation de son cycle vital

Le projet est-il susceptible d'avoir une	incidence ?
NON : ce formulaire, accompagné de se ou à la déclaration, et remis au service inst	es pièces, est joint à la demande d'autorisation ructeur.
	poursuivre. Un dossier plus poussé doit être d'autorisation ou à la déclaration, et remis au
A (lieu):	Signature :
Le (date) :	

DELIMITATION DE LA ZONE D'INFLUENCE DU PROJET

Echelle: 1/25.000

Engagement écrit concernant les modalités d'entretien du réseau et des ouvrages d'assainissement pluvial précisant la propriété des ouvrages.

Je soussigné, (Nom, prénom), pétitionnaire et propriétaire des ouvrages hydrauliques de l'opération « La Farlède Force 5 » m'engage à ce que l'entretien régulier des réseaux pluviaux primaires ainsi que des bassins écrêteurs de débits soit assuré afin de garantir leur bon fonctionnement et leur pérennité selon les conditions suivantes :

Entretien du réseau pluvial primaire

La surveillance des installations à l'intérieur du projet portera principalement sur un entretien régulier du réseau de collecte d'eau pluviale (désobstruction des collecteurs, des grilles, des avaloirs et des gouttières).

Un contrôle de l'état du réseau pluvial sera à réaliser deux fois par an au minimum et après chaque épisode pluvieux important.

Entretien du bassin de rétention enterré

L'entretien du bassin écrêteur portera sur les points suivants :


- curage de la décante ;
- nettoyage régulier des sédiments et des flottants dans le bassin.

Une visite de l'ouvrage devra être réalisée deux fois par an au minimum (début du printemps et d'automne) et après chaque épisode pluvieux important.

Entretien des ouvrages de traitement de la pollution chronique

Le compartiment de piégeage de la pollution chronique par cloison siphoïde faisant office de séparateur à hydrocarbures sera régulièrement contrôlé et vidangé par une entreprise agréée pour ce type d'opération.

Fait à , le

FICHE SYNTHETIQUE DES DOSSIERS NECESSITANT UNE PROCEDURE "EAU" VIS A VIS DE L'URBANISATION (REGIME DES DECLARATIONS)

Nota Bene: cette fiche remplie par le bureau d'étude est un résumé du dossier et elle ne s'y substitue pas, d'où l'obligation de compléter les références aux pages du dossier I°) ADMINISTRATIF			
N° MISE :			
Commune :	LA FARLEDE	III	
Nom de l'opération :	LA FARLEDE FORCE 5	III	
Maître d'ouvrage et son représentant (téléphone, courriel, adresse) :	SCCV LA FARLEDE FORCE 5 Représentant : SMART STRATEGY Téléphone : 04 83 99 46 49 Mail : contact@smartstrategygroup.net 1041 Avenue de Draguignan, ZI LA GARDE LA BASTID VERTE BP 30022, 83 097 TOULON CEDEX 9	II	
Bureau d'études (téléphone, courriel, adresse) :	E.U.R.L. EAU ET PERSPECTIVES – 540 Chemin de la Plaine 06250 MOUGINS téléphone : 04 92.28.20.32. Email : contact@eauetperspectives.fr		
Adresse du bureau d'études :	EAU ET PERSPECTIVES - 540 Chemin de la Plaine 06250 MOUGINS		
Régime : A ou D :	Déclaration	VII	
Rubrique(s):	2.1.5.0	VII	
Références cadastrales - numéros de parcelle et section :	Section AW; parcelle 52	III	

II°) DESCRIPTION SOMMAIRE

Surface du bassin versant (ha) au droit de l'opération :	27.360 m²	VII
Surface du bassin versant (ha) intercepté :		VII
Surface de l'opération (ha) :	29.050 m ²	III
Nom de l'exutoire des eaux pluviales :	Vallon à proximité de la voie ferrée	13
Nombre de lots d'habitat individuel :		

Nombre de lots d'habitat collectif :	1 (résidence de service)	VII
Dans le cas d'habitat collectif, présence de parkings souterrains :	Oui	VII
Surface imperméabilisée globale (m²) y compris chaussées revêtues, pavages, toitures, terrasses, piscines:	26.815 m ²	34
Surface moyenne des lots (m²):	27.360 m ²	34
Surface imperméabilisée globale (m²) :	27.360 m ²	34
Plan de situation :	Situation géographique Echelle : 1/25.000 et Extrait cadastral au 1/2.500	IV et V
Plan de masse à une échelle lisible :	Plan de masse en A3 Echelle 1/1.000	35
Synoptique des ouvrages en plan et en coupe à une échelle lisible :	Position de principe, vue en plan et coupe de principe du bassin écrêteur Position de principe et coupe de principe de l'ouvrage de colature amont	42 43 44 45

III°) ETAT INITIAL

1°) Aspect qualitatif:

Périmètre protection captage : PPR /PPE ? :	Les terrains du projet ne sont concernés par aucun périmètre de protection de captage d'AEP	An. N°5
Date de la DUP des captages :	Sans objet	
Interdictions principales de la DUP : décaissement, remblais, route, activité polluante :	Sans objet	
Vulnérabilité de la nappe selon la carte BRGM :	Sensibilité très élevée, nappe affleurante	8
Présence d'une zone NATURA 2000 :	Hors projet, à 2 km au Nord-Ouest et à 4,3 km au Sud-Est	32 33
Présence ZNIEFF, ZICO:	Hors projet.3 ZNIEFF terrestre de type II	32 33
Niveau de sensibilité du territoire vis à vis de la Tortue d'Hermann	Sencinilité trec tainle	32 33
Référence au SDAGE et au SAGE s'ils existent :	Dépend du SDAGE Rhône - Méditerranée	51 52
Objectif de qualité du cours d'eau exutoire :	Bon état lié à la masse d'eau de surface FRDR115	52
Vulnérabilité selon la carte de zonage des zones endiguées :	A notre connaissance non	

2°) Aspect hydraulique

:

Apports des bassins versants extérieurs (ha) au droit de l'opération :	6.500 m ²	13 17
Apports des bassins versants extérieurs (ha) interceptés par l'opération :	6.500 m²	13 17
Vulnérabilité aval (zones inondables - PPRI) : Zo	Zones blanches dans PPRI et TRI Zone « Inondabilité par ruissellements sur les iedmonts » dans AZI	29 30 31
Débit de débordement de l'exutoire au droit du projet (m³/s) :	Débit capable de l'ouvrage en arche : 5 m ³ /s	27
Capacité actuelle de l'exutoire jusqu'au cours d'eau en fonction des enjeux (habitations, routes):	Débit capable de l'ouvrage en arche : 5 m ³ /s	27
Existence d'un schéma d'assainissement pluvial : O/N :	Non	
Compatibilité du projet avec le schéma d'assainissement pluvial : O/N :	ans objet	

IV°) MESURES COMPENSATOIRES

1°) Aspect qualitatif :

Eaux pluviales:

Traitement de la pollution chronique (fossé enherbé, bassins, décanteur deshuileur) :	Présence d'une décante et d'une cloison siphoïde dans les bassins écrêteurs projetés	I 46 47
Traitement de la pollution accidentelle (bassin, vanne martelière):	Non	

Eaux usées:

Nom de la STEP et maître d'ouvrage de la STEP :	LA CRAU VALLEE DU CAPEAU – SADE EXPLOITATION SUD EST DE LA FRANCE	36
Nombre d'équivalents-habitants de l'opération :	Non indiqué	
Capacité STEP à recevoir ces effluents : O/N :	Oui	36
Nom du milieu récepteur du rejet de la STEP :	Le Gapeau	36

Eau potable:

Capacité du réseau et de la ressource à alimenter	0;	
en eau l'opération : O/N :	Oui	

Compatibilité

SDAGE - Justification de la compatibilité vis-à-c vis des orientations fondamentales du SDAGE :	Limitation des débits ruisselés à l'aval du projet par la création d'un bassin écrêteur de débits pluviaux. Création d'une décante et d'une cloison siphoîde dans le bassin écrêteur afin d'éviter les pollutions chroniques des milieux récepteurs	51
SDAGE - Classe d'état et objectifs des masses d'eau d'eau d'	Cap Cepet – Cap de Carqueiranne - Etat écologique : Bon. Etat chimique : Bon. Objectif bon état écologique : 2015, Objectif bon état chimique : 2021.	52
SDAGE - Programme de mesures préconisé - d Justification de la compatibilité d	Limitation des débits ruisselés à l'aval du projet par la création d'un bassin écrêteur de débits pluviaux. Création d'une décante et d'une cloison siphoîde dans le bassin écrêteur afin d'éviter les pollutions chroniques des milieux récepteurs	51
SAGE : S	SAGE du Gapeau. En cours de validation.	52
NATURA 2000 : \$	Sans objet	

2°) Aspect hydraulique

<u>:</u>

La réalisation et l'aménagement ne doit occasionner aucune perturbation hydraulique préjudiciable à l'aval : modification des écoulements <u>et</u> augmentation des débits quel que soit le type de pluie

Modification de la topographie du terrain (exhaussement) : O/N :	Non	
Modification des exutoires existants : O/N :	Non	
Localisation et description des modifications :		

Rappel:

La valeur du **débit de fuite** (Qf) des bassins est le débit biennal (Q 2 ans) en cas d'exutoire identifié ou 15 L/s/hectare en cas d'absence d'exutoire clairement identifié. Vérification que Qf est inférieur au débit capable de l'exutoire.

Le **volume des bassins** est calculé par les 3 méthodes suivantes et on retient la valeur la plus importante :

- 1) volume de rétention d'au minimum 100 L/m² imperméabilisé, augmenté de la capacité naturelle de rétention liée à la topographie du site assiette du projet (cuvette), si elle est supprimée
- 2) préconisations du PLU ou du POS si ces dernières sont plus contraignantes
- 3) méthode de calcul des débits de pointe avant et après aménagement pour une pluie d'occurrence centennale avec utilisation de la méthode de transformation pluie/débit dite du « réservoir linéaire » pour une durée de pluie de 120 mn

	Avant aménagement	Après aménagement
Pente moyenne du terrain	2%	2%

Coefficient de	Avant aménagement	Après aménagement
Coefficient de ruissellement	(terrain naturel)	BV Collecté
C2	0,12	0,98
C5	0,30	0,99
C10	0,30	0,99
C100	0,41	0,99

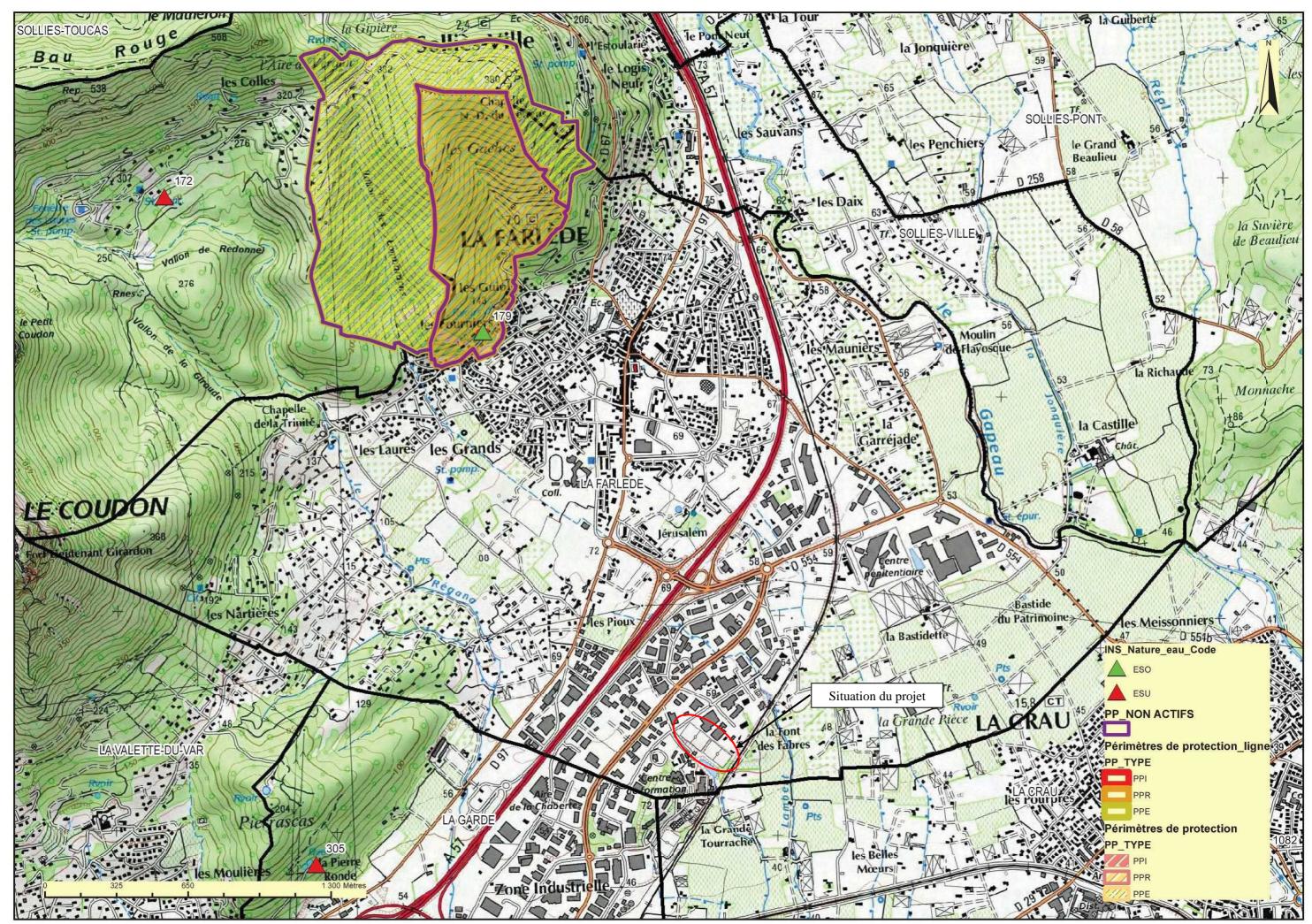
	Avant aménagement Après aménagemen		
Bassin versant	Temps de concentration		
BV Collecté	26	6	

Modification des débits :

BV Collecté			
Débit à l'aval de l'aménagement (m3/s)	Avant aménagement	Après aménagement sans	Après aménagement avec compensation
		compensation	
Q 2 ans	0,088	0,706	0,088
Q 5 ans	0,168	0,798	0,088
Q 10 ans	0,204	0,946	0,088
Q 100 ans	0,441	1,389	0,088

<u>Caractéristiques géométriques des ouvrages de rétention :</u>

	Surface en fond du bassin de rétention (m²)		Q entrant (100 ans) (m ³ /s)	Q fuite (m ³ /s)	Hauteur max digue/TN aval (m)
RET BV Collecté 1.440		2.981	1,389	0,088	-


Aspect sécurité (pour chaque bassin) :

rispect securite (pour enague sussin).	RET BV Collecté
Dimensions du déversoir de sécurité (m) :	Surverse de sécurité : $L = 10 \text{ m}$; $h = 0.35 \text{ m}$; $r = 0.10 \text{ m}$
Protection des personnes :	Surverse aménagée vers l'aval du projet
Exutoire des eaux de surverse (voirie, fossé, rue):	Vallon communal à proximité de la voie ferrée
Présence d'urbanisation à l'aval de la digue : O/N :	Pas de digue
Distance des premières habitations de la digue (m):	Sans objet
Fonctionnement du système en cas d'événement exceptionnel :	Surverse de sécurité puis rejet dans vallon en aval du projet

Observations:

- 1°) Il conviendra de vérifier et mentionner l'existence éventuelle de réseaux d'alimentation en eau potable ou d'assainissement des eaux usées qui pourraient être interceptés par le projet ou endommagés pendant la phase d'exécution des travaux. Dans l'affirmative, des mesures compensatoires seront définies en accord avec le gestionnaire du réseau afin que la continuité du service soit assurée sans risque pour la santé publique.
- 2°) Joindre un engagement écrit concernant les modalités d'entretien du réseau et des ouvrages d'assainissement pluvial. Préciser la propriété des ouvrages.
- 3°) Joindre une copie du permis de construire, arrêté de lotir, délibération du Conseil Municipal/ZAC
- 4°) Vérifier si les autorisations de rejet des eaux pluviales dans les exutoires (fossés privés ou publics, roubines, réseau communal etc...) sont accordées.
- 5°) Selon les caractéristiques de la digue et en tenant compte de l'urbanisation du site, la mise en place de cet ouvrage et son suivi seront assurés par un BET spécialisé.

Annexe IV : Carte des périmètres de protection AEP

De: Gregory JACQUEL <g.jacquel@lafarlede.fr>

Envoyé: mardi 30 janvier 2018 09:32

À: Snapse

Cc: Jean-Paul SABRAN

Objet: RE: DOSSIER LA FARLEDE FORCE 5

Bonjour,

Suite à votre demande concernant l'autorisation de vous rejeter au réseau d'évacuation des eaux pluviales situé sur le domaine public communal, dans le cadre de votre projet LA FARLEDE FORCE 5 en cours de conception et afin de permettre l'élaboration du dossier LOI SUR L'EAU, je vous prie de trouver ci-après l'avis correspondant de la commune :

AVIS FAVORABLE, sous réserve de confirmation de votre part, à réalisation de l'opération, que le débit des eaux pluviales rejeté ne soit pas supérieur à celui constaté au démarrage des travaux.

Vous en souhaitant bonne réception,

Cordialement,

Grégory JACQUEL

Directeur Général Adjoint Pôle Technique Ville de La Farlède

04 94 27 85 88 04 94 27 05 29 g.jacquel@lafarlede.fr

Autorisation E.U.

Agence de Lyon 169 Avenue Franklin Roosevelt

69 150 DECINES-CHARPIEU - Tél.: 04.72.37.68.52

Mail: environnement.lyon@fondasol.fr

SCCV LA FARLEDE FORCE 5

LA FARLEDE (83)
569 avenue du Docteur Calmette
Projet de construction
Missions A110 et A200

Suivi des modifications et mises à jour

Rév.	Date	Nb	Modifications	Rédacteur	Relecteur	Superviseur
Rev.	Date	page s	Piddiffications	Nom, Visa	Nom, Visa	Nom, Visa
	04/04/2018	114	Première diffusion	N. CAHEN	B. DECLE	P. GALDEANO
Α						
В						
С						

										<u> </u>
REV		Α	В	С	REV		Α	В	С	
PAGE					PAGE					
	Χ				41	Χ				
2	Х				42	Χ				
3	Х				43	Χ				
4	Х				44	Х				
5	Х				45	Х				
6	Х				46	Х				
7	Х				47	Х				
8	Х				48	Х				
9	Х				49	Х				
10	Х				50	Х				
[]	Х				51	Х				
12	Х				52	Х				
13	Х				53	Х				
14	Х				54	Х				
15	Х				55	Х				
16	Х				56	Х				
17	Х				57	Х				
18	Х				58	Х				
19	Х				59	Х				
20	Х				60	Х				
21	Х				61	Х				
22	X				62	X				
23	X				63	X				
24	X				64	X				
25	X				65	X				
26	X				66	X				
27	X				67	X				
28	X				68	X				
29	X				69	Х				
30	Х				70	Х				
31	Х				71	Χ				
32	X				72	X				
33	Х				73	Х				
34	X				74	X				
35	X				75	X				
36	Х				76	X				
37	Х				77	X				
38	Х				78	Х				
39	Х				79	Х				
40	Χ				80					

REV		Α	В	С	REV	Α	В	С	
PAGE					PAGE				
81	Х				121				
82	X				122				
83	X				123				
84	X				124				
85	X				125				
86	Х				126				
87	Х				127				
88	Х				128				
89	Х				129				
90	Х				130				
91	Х				131				
92	Х				132				
93	Х				133				
94	Х				134				
95	Х				135				
96	Х				136				
97	Х				137				
98	Х				138				
99	Х				139				
100	Х				140				
101	Х				141				
102	Х				142				
103	Х				143				
104	Х				144				
105	Х				145				
106	Х				146				
107	Х				147				
108	Х				148				
109	Х				149				
110	Х				150				
Ш	Х				151				
112	Х				152				
113	Х				153				
114	Х				154				
115					155				
116					156				
117					157				
118					158				
119					159				
120					160				

Synthèse non technique

SCCV LA FARLEDE FORCE 5 projette la construction de trois bâtiments à usages de commerces, bureaux, logements, services et complexe sportif, voiries et espaces verts sur l à 2 niveaux de sous-sol au droit d'une parcelle située au 569 rue du Docteur Calmette à LA FARLEDE (83), d'une superficie totale d'environ 3 hectares. Dans ce cadre, FONDASOL Eau et Environnement a été sollicité pour la réalisation d'une étude historique et documentaire et d'un diagnostic environnemental des sols (Missions A110 et A200), suite à l'acceptation de notre devis référencé DE.3ELY.18.01.006 – Ind. B.

Cette étude a pour objectif de :

- retracer l'historique du site,
- définir la qualité des sols au droit des projets de réaménagement,
- déterminer, en première approche, les filières d'évacuation des éventuelles terres à excaver dans le cadre des projets futurs (voiries, fondations, sous-sol, etc.).

A la connaissance de FONDASOL Eau et Environnement, aucun autre diagnostic environnemental n'a été précédemment réalisé au droit du site.

D'après les résultats de l'étude historique et documentaire, il n'existe ni site BASIAS ni site BASOL référencé au droit du site d'étude. De plus, d'après les informations obtenues auprès de la Mairie de LA FARLEDE le site n'a pas abrité d'ancien site ICPE. Seul un permis de construire pour la création d'un vestiaire sportif au sud-est du site à l'étude a été déposé.

Les photographies aériennes ont démontré que le site est principalement occupé par des bois, friches et cultures jusqu'en 1986 où la partie sud est défrichée pour accueillir une petite construction pouvant correspondre des vestiaires de sport.

A partir de 1989, deux terrains de sport sont présents au centre du site, puis un parking est mis en place à partir de 2003. Les vestiaires sportifs ne sont plus présents à ce jour.

Actuellement, le parking présent au sud du site est toujours en activité, et les deux terrains de sport sont occupés par des gens du voyage.

Sur la base de ces éléments, les éventuelles pollutions que l'on pourrait retrouver au droit du site seraient liées à l'apport éventuel de remblais de mauvaise qualité environnementale sur l'ensemble du site ainsi qu'à l'activité de parking en partie sud et de stationnement de véhicules au centre du site.

Au total, 15 sondages ont été réalisés à la pelle mécanique poursuivis jusqu'à 2 m de profondeur.

Sur la base des observations de terrain et du projet d'aménagement, 15 échantillons de sols ont été sélectionnés et transmis au laboratoire pour analyses.

En supplément, 3 échantillons ont été réalisés sur les deux sondages carottés réalisés dans le cadre de l'étude géotechnique.

Les investigations et les résultats d'analyses ont mis en évidence des anomalies en métaux lourds et des traces en HAP et hydrocarbures totaux ainsi que le dépassement de certains critères de l'arrêté du 12 décembre 2014 relatif aux Installations de Stockage de Déchets Inertes (ISDI).

Dans le cas d'une excavation des terres concernées par ces dépassements, une évacuation directe des terres polluées en ISDI aménagée (ISDI+) ou en ISDND serait à prévoir.

Au vu des résultats de l'étude, FONDASOL Eau et Environnement, préconise la réalisation d'études complémentaires qui permettront de vérifier la compatibilité sanitaire du site visà-vis des aménagements et des usages projetés.

Synthèse technique

Client	SSCV LA FARLEDE FORCE 5						
	Désignation usuelle du site	-					
Périmètre d'étude	Adresse	569 avenue du Docteur Calmette à LA FARLEDE (83)					
	Parcelles cadastrales	Parcelles n°263 et n°318 section HD					
	Surface approximative	Environ 3 hectares					
	Altitude moyenne du site	entre + 54 et + 57 m NGF.					
Contexte de l'étude	Cette étude est réalisée dans le cadre du projet d'aménagement d'un complexe sportif (construction d'un complexe sportif, d'un bâtiment à usage de bureaux et d'un bâtiment à usage résidentiel et de service). Projet incluant la création d'un ou deux niveaux de sous-sol, de voiries et d'espaces verts.						
AII0 – Étude historique	 1986 (possiblement des ves De 1989 à aujourd'hui : Cré sud du site à partir de 2003 	ation de deux terrains de sport. Création d'un parking en partie ud toujours en activité. Terrains de sport occupés par du					
A200 – Diagnostic des sols	 15 sondages sols à 2 m de profondeur à la pelle mécanique. 3 échantillons réalisés sur deux sondages carottés réalisés jusqu'à 6 m dans le cadre de l'étude géotechnique. Présence d'anomalies en métaux dont mercures, traces en HAP et HCT C₁₀-C₄₀. Dépassements de certains critères de l'arrêté du 12/12/2014 relatif à l'acceptation en ISDI. 						
	Sources	Remblais d'origine inconnue.					
Sahána agnasatual	Voies de transfert	 Volatilisation des composés volatils à partir des sols. Envol des poussières à partir des sols non recouverts. 					
Schéma conceptuel	Cibles	 Futurs employés adultes. Futurs visiteurs enfants et adultes. Futurs résidents enfants et adultes. 					
	Voies d'exposition	 Inhalation de composés volatils à partir des sols. Inhalation et ingestion de poussières. Contact cutané à partir des sols non recouverts. 					
Recommandations	d'évaluer le dégazage du mercu En fonction des résultats d'analy Evaluation Quantitative des Ris	r à des investigations complémentaires dans les gaz du sol afin re au droit du niveau de sous-sol. yses sur les gaz du sol, il pourra être nécessaire de réaliser une ques Sanitaires (EQRS), afin d'évaluer la compatibilité sanitaire nnementale des milieux au droit du site.					

Sommaire

Synthèse non technique	4
Synthèse technique	6
Abréviations	9
Normes et Méthodologie	10
I – Méthodologie nationale de gestion des sites et sols potentiellement pollués	10
2 – Normes de prélèvements et documents de références	_ 11
3 – Limite de la méthode	12
Présentation de notre mission	13
Présentation du site et du projet	_ 14
I – Localisation du site d'étude	14
2 – Projet d'aménagement	14
Étude historique, documentaire et mémorielle du site (AII0)	18
I – Source d'informations	18
2 – Consultation des photographies aériennes	19
3 – Consultation des bases de données BASIAS et BASOL	23
4 – Consultation des archives municipales de LA FARLEDE (83)	23
5 – Consultation de la Préfecture	25
6 – Accidents environnementaux	25
Synthèse des sources potentielles de pollution et conception du programme d'investigations	_ 26
Reconnaissance de la qualité des sols (A200)	29
I – Stratégie d'investigations	29
2 - Observations de terrain	29
3 – Analyses en laboratoire	31
3.1 – Programme analytique	31
4 – Examen de la qualité des sols	32
4.1 – Valeurs de référence	32
4.2 – Résultats	33
4.3 – Présentation et interprétation des résultats	35
5 - Détermination de la filière d'élimination	36
5.1 – Critères d'acceptation en Installation de Stockage	36
5.2 – Présentation des résultats et comparaison aux seuils d'acceptation	37
5.3 – Interprétation des résultats d'analyses	39
Schéma conceptuel	40
I – Présentation de l'aménagement	40

	2 Increase des milianos
	2 – Impacts des milieux
	3 – Voies de transfert et milieux d'exposition
	4 – Cibles concernées
	Conclusion et recommandations
	Conditions Générales
	EXES
	Annexe I – Description de la campagne de prélèvements de sols
	Annexe 2 - Fiches de prélèvements des sols
•	Annexe 3 - Bordereaux d'analyses du laboratoire
ABL	E DES FIGURES
	Figure I : Logigramme des prestations préconisées et réalisées (en bleu)
	Figure 2 : Localisation géographique et cadastrale du site d'étude (Source : IGN©)
	Figure 3 : Plan de masse du projet d'aménagement des sous-sols (Source : SCCV LA FARLEDE FORCE en date du 19/020/2018)
	Figure 4 : Plan de masse du projet d'aménagement en RDC (Source : SCCV LA FARLEDE FORCE 5 date du 19/020/2018)
	Figure 5 : Photographies aériennes (Source : IGN©)
	Figure 6 : Emprise du projet de vestiaire sportif selon l'extrait de plan de masse joint au permis de construire n°PC8305406DC039
	Figure 7 : Synthèse cartographique des sources potentielles de pollution recensées
	Figure 8 : Localisation des investigations (Source : Plan de projet transmis par le client datant du 19/02/2018)
	Figure 9 : Schéma conceptuel du site
ISTE	DES TABLEAUX
	Tableau I : Prestations concernées
	Tableau 2 : Liste des clichés consultés (Source : IGN©)
	Tableau 3 : Synthèse de l'étude des photographies aériennes
	Tableau 4 : Synthèse des sources potentiellement polluantes recensées sur site
	Tableau 5 : Synthèse du programme analytique
	Tableau 6 : Résultats analytiques sur brut de l'ensemble des sondages (1/2)
	Tableau 7 : Résultats analytiques sur brut de l'ensemble des sondages (2/2)
	Tableau 8 : Résultats analytiques sur brut et sur éluat et comparaison avec les seuils d'acceptation en Installation de stockage de déchets (1/2)
	Tableau 9 : Résultats analytiques sur brut et sur éluat et comparaison avec les seuils d'acceptation en Installation de stockage de déchets (2/2)
	Tableau 10 : Filières d'évacuation possibles

Abréviations

Abréviation	Définition
ARIA	Analyse, Recherche et Information sur les Accidents
BARPI	Bureau d'Analyse des Risques de Pollutions Industrielles
BASIAS	Base de données des Anciens Sites Industriels et Activités de Service
BASOL	Base de données sur les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif
BRGM	Bureau de Recherches Géologiques et Minières
BTEX	Benzène, Toluène, Ethylbenzène et Xylènes
COHV	Composés Organiques Halogénés Volatils
DIB	Déchets Industriels Banals
DICT	Déclarations d'Intention de Commencement de Travaux
EQRS	Évaluation Quantitative des Risques Sanitaires
FOD	Fioul domestique
HAP	Hydrocarbures Aromatiques Polycycliques
НСТ	Hydrocarbures Totaux
ICPE	Installations Classées pour la Protection de l'Environnement
IGN	Institut Géographique National
ISDD	Installation de Stockage de Déchets Dangereux
ISDI	Installation de Stockage de Déchets Inertes
ISDND	Installation de Stockage de Déchets Non Dangereux
LQ	Limite de Quantification
ML	Métaux Lourds
MS	Matière Sèche
NGF	Nivellement Général de la France
PCB	Polychlorobiphényles

Normes et Méthodologie

I – Méthodologie nationale de gestion des sites et sols potentiellement pollués

La méthodologie retenue par FONDASOL Eau et Environnement pour la réalisation de cette étude prend en compte :

- les textes et outils de la Politique Nationale de gestion des sites et sols pollués en France de février 2007,
- les exigences de la norme NF X 31-620 « Qualité du sol Prestations de services relatives aux sites et sols pollués » de juin 2011, et
- le référentiel de certification de service du 30 mai 2011 des prestataires dans le domaine des sites et sols pollués.

Le logigramme présenté ci-dessous rappelle la méthodologie à respecter selon les prescriptions du Ministère en charge de l'Environnement. Les missions élémentaires réalisées dans le cadre de la présente étude sont entourées en bleu.

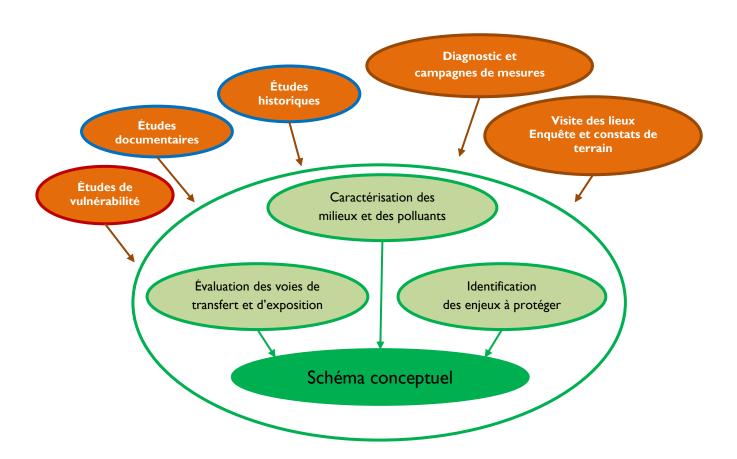


Figure 1 : Logigramme des prestations préconisées et réalisées (en bleu)

Concernant la Norme AFNOR NF X 31-620-2, les prestations globales et élémentaires concernées par l'étude sont récapitulées dans le tableau suivant.

Tableau I : Prestations concernées

Code	Prestation
AII0	Études historiques, documentaires et mémorielles
A200	Prélèvements, mesures, observations et/ou analyses sur les sols

2 – Normes de prélèvements et documents de références

Les prélèvements de sol ont été réalisés conformément aux normes :

- NF ISO 10381-1 de mai 2003 « Qualité du sol Échantillonnage Partie 1 : Lignes directrices pour l'établissement des programmes d'échantillonnage »,
- NF ISO 10381-2 de mars 2003 « Qualité du sol Échantillonnage Partie 2 : Lignes directrices pour les techniques d'échantillonnage »,
- NF ISO 10381-3 de mars 2002 « Qualité du sol Échantillonnage Partie 3 : Lignes directrices relatives à la sécurité »,
- NF ISO 10381-5 de décembre 2005 « Qualité du sol Échantillonnage Partie 5 : Lignes directrices pour la procédure d'investigation des sols pollués en sites urbains et industriels »,
- NF ISO 18512 d'octobre 2007 « Qualité du sol Lignes directrices relatives au stockage des échantillons de sol à long et court termes ».

3 – Limite de la méthode

La méthode proposée est notamment basée sur une approche documentaire et d'enquête de terrain. Malgré les moyens que FONDASOL Eau et Environnement s'engage à mettre en œuvre et l'ensemble des sources d'informations consultées, l'existence d'une information non divulguée ou erronée ne peut être exclue.

Cette étude ne permet pas de dimensionner, ni d'évaluer les coûts de traitement d'une pollution qui serait mise en évidence, ni d'en déterminer les risques vis-à-vis de la santé humaine.

Les prélèvements ponctuels ne peuvent pas offrir une vision continue de l'état des terrains du site. L'existence d'une anomalie d'extension limitée entre deux prélèvements et/ou à plus grande profondeur, qui aurait échappé à nos investigations, ne peut être exclue.

L'échantillonnage du fait de son caractère ponctuel ne permet pas de représenter la totalité des impacts anthropiques (activités et installations humaines ciblées, lors des investigations, en fonction des données disponibles).

FONDASOL Eau et Environnement n'est pas en mesure de préjuger de l'acceptation des terres odorantes ou présentant une couleur suspecte. L'acceptation des terres sera à vérifier auprès de la décharge. Des surcoûts supplémentaires peuvent donc être à prévoir.

Les déchets enfouis, s'ils ne peuvent être triés à l'avancement des terrassements, peuvent générer des refus en filière ISDI ou ISDI aménagée.

Présentation de notre mission

SCCV LA FARLEDE FORCE 5 projette la construction d'une salle de sport et de bâtiments avec sous-sols, voiries et espaces verts au droit d'une parcelle d'une superficie totale d'environ 3 hectares, située au 569 rue du Docteur Calmette à LA FARLEDE (83). Dans ce cadre, FONDASOL Eau et Environnement a été sollicité pour la réalisation d'une étude historique et documentaire et d'un diagnostic environnemental des sols (Missions A110 et A200), suite à l'acceptation de notre devis référencé DE.3ELY.18.01.006 – Ind. B.

Cette étude a pour objectif de :

- retracer l'historique du site,
- définir la qualité des sols au droit des projets de réaménagement,
- déterminer, en première approche, les filières d'évacuation des éventuelles terres à excaver dans le cadre des projets futurs (voiries, fondations, sous-sol, etc.).

A la connaissance de FONDASOL Eau et Environnement, aucun autre diagnostic environnemental n'a été précédemment réalisé au droit du site.

Afin de répondre à ces objectifs, ce rapport comprend :

- l'étude historique, dégageant les enjeux en matière de sources potentielles de pollution pour le projet (A110),
- la description de la campagne d'investigations des sols (A200),
- l'interprétation des résultats d'analyses,
- les conclusions et recommandations de FONDASOL Eau et Environnement, en particulier en ce qui concerne la qualité des milieux observée à l'issue du diagnostic environnemental et en fonction de l'usage projeté.

Présentation du site et du projet

I – Localisation du site d'étude

Le site d'étude est localisé au sud de la commune de LA FARLEDE dans le département du VAR (83).

D'après la carte IGN, le site est relativement plat et possède une altitude située entre + 54 et + 57 m NGF.

Le site est situé en bordure de zone industrielle et commerciale. Il est bordé :

- au nord par des commerces (magasin de pièces automobiles, de luminaires...) et des entreprises diverses, ainsi que par la rue du docteur Calmette,
- au sud par le lycée La Tourrache et par un bassin d'orage.
- à l'est par une voie ferrée et des cultures,
- et à l'ouest par des commerces, un parking et des entreprises diverses.

Le site est actuellement occupé par un parking utilisé par les élèves du Lycée La Tourrache dans sa partie sud à sud-ouest et de deux anciens terrains de sport dans sa partie centrale.

La localisation du site est présentée en figure 2.

2 - Projet d'aménagement

D'après le plan de masse qui nous a été transmis, le projet prévoit la construction :

- d'un parking souterrain en R-I sur la quasi-totalité du site, et en R-2 dans sa partie est.
- d'un business center à usage de bureaux, crèche et conciergerie en R+5,
- d'une résidence de services en R+5 à usage de commerces en RDC, et de logements en étages,
- d'un complexe sportif en R+2, à usage de locaux techniques, vestiaires, soins thalasso et parking en R-1, commerces, terrains de sports, piscine, etc. en RDC, R+1 et R+2.
- De voiries et espaces verts.

Les plans du projet d'aménagement sont présentés en figure 3 et figure 4.

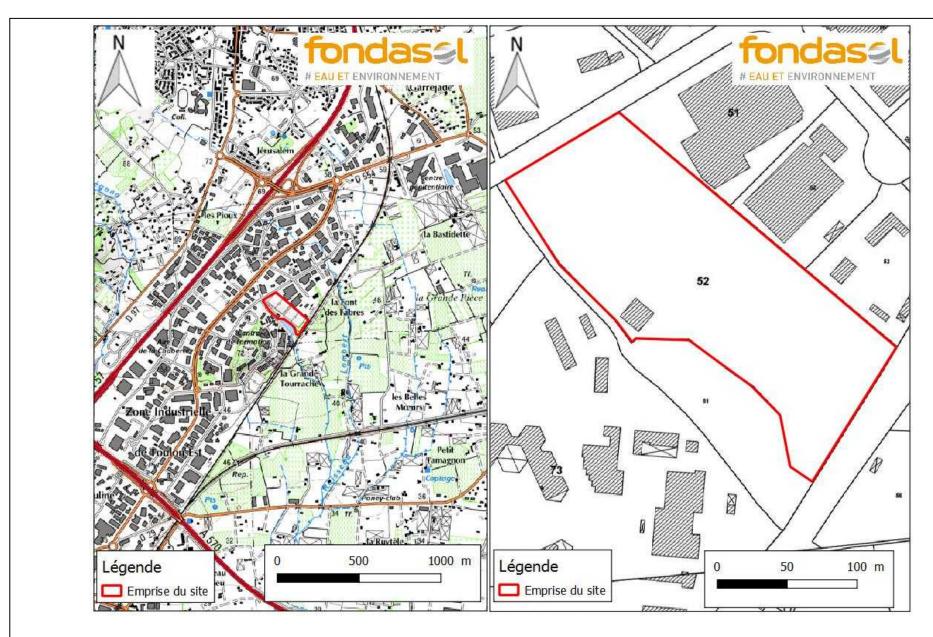


Figure 2 : Localisation géographique et cadastrale du site d'étude (Source : IGN©)

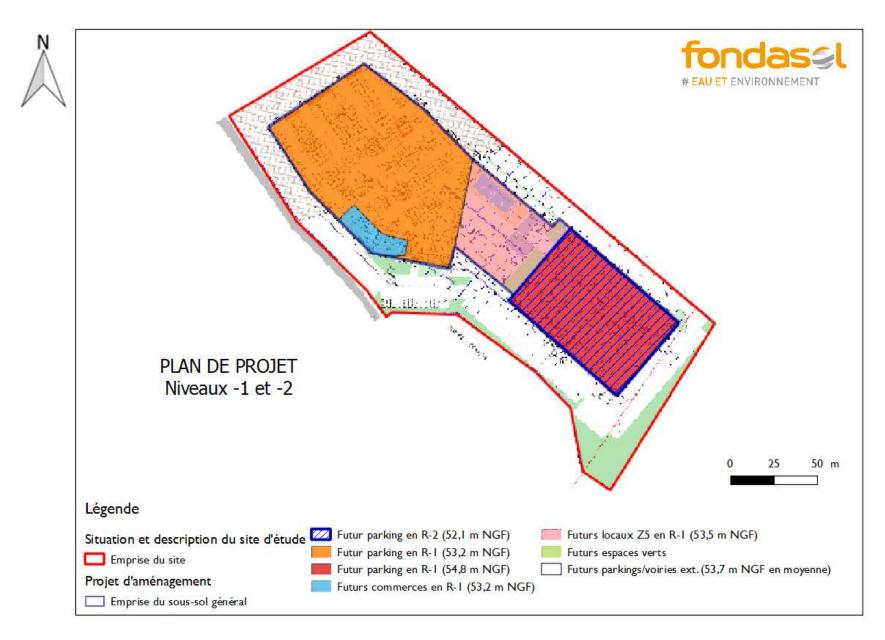


Figure 3 : Plan de masse du projet d'aménagement des sous-sols (Source : SCCV LA FARLEDE FORCE 5 en date du 19/020/2018)

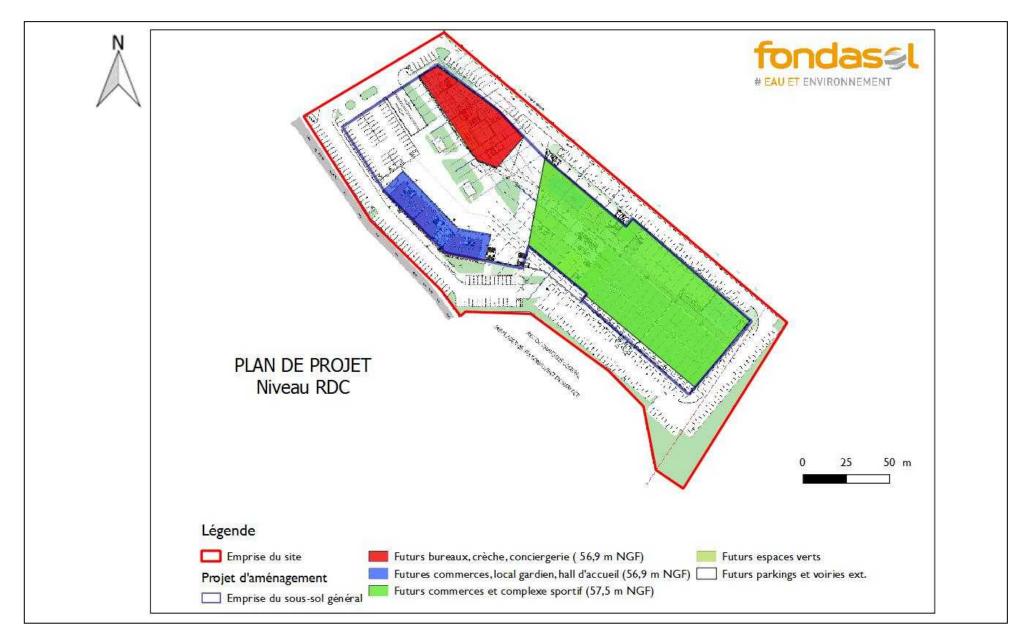


Figure 4 : Plan de masse du projet d'aménagement en RDC (Source : SCCV LA FARLEDE FORCE 5 en date du 19/020/2018)

Étude historique, documentaire et mémorielle du site (A110)

L'étude historique a pour but de reconstituer, à travers l'histoire des pratiques industrielles et environnementales du site, d'une part les zones potentiellement polluées et d'autre part les types de polluants potentiellement présents au droit du site concerné.

I – Source d'informations

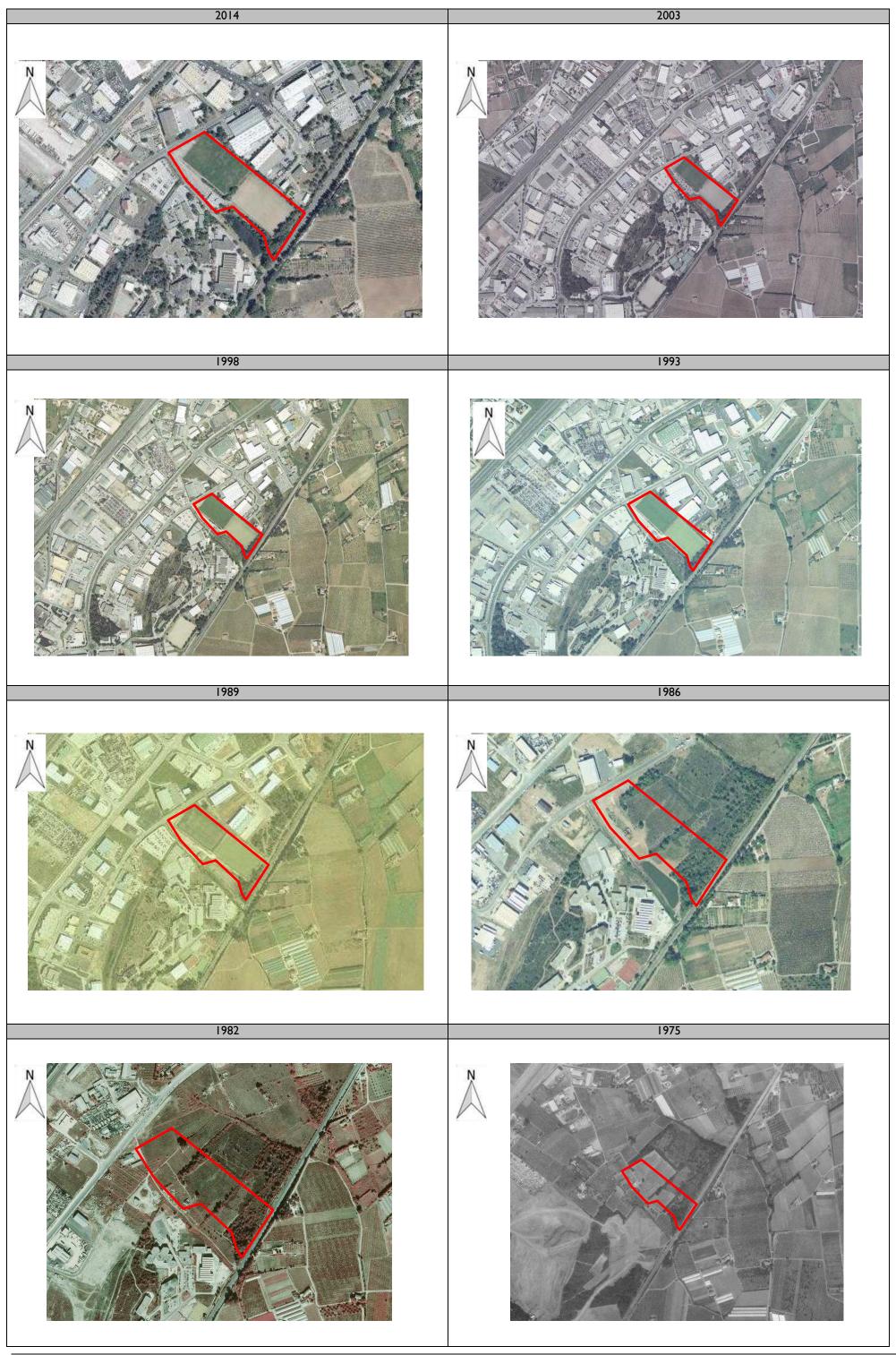
Cette étude historique du site s'appuie sur :

- la consultation des bases de données BASIAS du BRGM et BASOL du MEDDE,
- l'étude de photographies aériennes disponibles sur le site de l'IGN© et l'étude de la photographie aérienne de 2014 disponible sur Géoportail.gouv.fr,
- les informations disponibles aux archives municipales de LA FARLEDE (83),
- la base de données ARIA du BARPI,
- la base de données des ICPE accessible sur installationsclassees.developpementdurable.gouv.fr,
- les informations transmises par le client.

2 - Consultation des photographies aériennes

Les clichés consultés sont présentés dans le tableau suivant.

Tableau 2 : Liste des clichés consultés (Source : IGN©)


Année	Référence	N° cliché
1930	C3346-0541_1930_NP7_30013	30013
1950	C3246-0361_1950_LACIOTAT-CAP_LARDIER_0037	37
1968	IDEM - C3346-0511_1968_CDP7704_4517	4517
1969	IDEM- C3246-0341_1969_CDP7351_1900	1900
1971	IDEM - C3346-0081_1971_TOULON- CAPLARDIER_0046	46
1972	C3246-0084_1972_IFN83_IRC_0023	23
1973	- C3346-0391_1973_CDP6866_9152	9152
1975	C3346-0331_1975_CDP8019_7319	7319
1976 (peu lisible)	C3346-0071_1976_F3346-3446_0066	66
1977	CIPLI-0361_1977_FR2904_LOT_10_0075	75
1978	- C3340-0061_1978_FR9064_1315	1315
1981	- CN81000451_1981_FR3300-DIC_0757	757
1982	- CN82000014_1982_IFN83_IRC_4022	4022
1986	3246-0032_1986_FR3987_0025	25
1987	C3446-0021_1987_F3446_0048	48
1988	C3246-0441_1988_F3246-3446_0042	42
1989	C3346-0032_1989_FR4388_0019	19
1991	C91SAA1771_1991_FP3346-3446_0058	58
1993	C93SAA1332_1993_FD83C_0006	6
1995	CN95000024_I995_IFN83_IRC_0478	478
1998	CA98S00912_1998_FD13-83_1079	1079
2003	CP03000012_2003_fd1383_250_c_0295	295
2006	CP06000272_FR5651GDx556_13999	13999
2008	CP08000152_FD83_fx058_4067	4067
2014	Géoportail	-

La synthèse des observations réalisées sur le site et dans l'environnement proche est présentée dans le tableau suivant.

Tableau 3 : Synthèse de l'étude des photographies aériennes

Année	Observations sur site	Observations hors site		
1930-1950	Présence de champs cultivés et de bois.	Voie ferrée bordant le site au sud-est. Parcelles cultivées, bois et fermes aux alentours.		
1972-1975	Présence d'une petite construction individuelle au droit du site.	Bâtiment dans les environs nord-ouest du site.		
1981-1982	La construction individuelle n'est plus présente. Le site est à nouveau occupé uniquement par des terrains cultivés, des friches et des bois.	A partir de 1981, un ensemble immobilier est construit au sud du site, il pourrait s'agir de l'actuel lycée. Les constructions se densifient en partie ouest et nord du site.		
1986	La zone située à l'ouest du site est en train d'être défrichée. Le reste du site est recouvert de friches et de bois.	Un bassin d'orage est mis en place au sud du site.		
1989-1998	Deux terrains de sports sont présents au droit du site, ainsi qu'une petite construction au sud.	Les constructions de type industriel et commercial se densifient en partie nord, ouest et		
2003-2014	Un parking est construit en partie sud-ouest du site. Les terrains de sport ainsi que la petite construction sont toujours présents.	sud du site. L'est de site reste principalement cultivé.		

Les photographies jugées les plus représentatives de l'évolution du site et de son environnement sont présentées en figure suivante par ordre chronologique inverse.

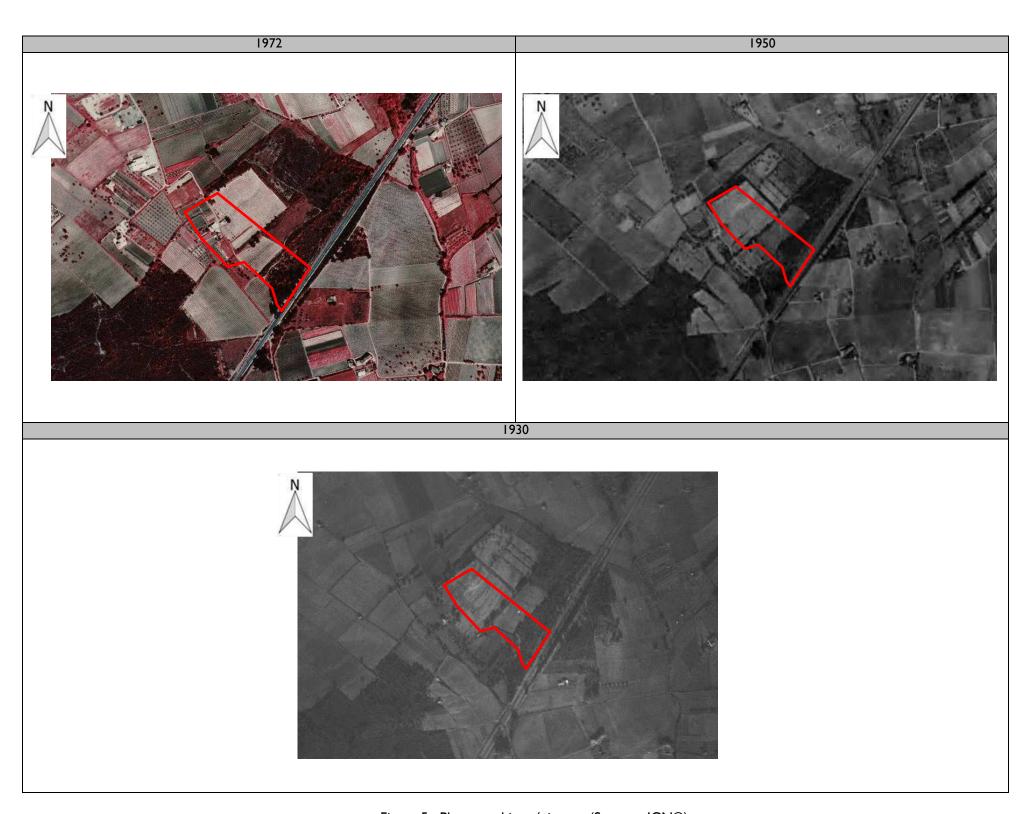


Figure 5 : Photographies aériennes (Source : IGN©)

3 – Consultation des bases de données BASIAS et BASOL

Il n'existe aucun site recensé dans les bases de données BASIAS et BASOL au droit du site d'étude.

4 - Consultation des archives municipales de LA FARLEDE (83)

Le service urbanisme de la mairie de LA FARLEDE nous a communiqué, suite à notre demande, les informations suivantes :

- Aucune trace d'ICPE autorisée n'a été recensée au droit du site à l'étude et à proximité. L'ICPE la plus proche (PETROGARDE SAS) se trouve sur la commune voisine LA GARDE (83) soit à environ 800 m au sud du site.
- Un permis de construire (n°PC8305406DC039) a été délivré le 09/01/2007 sur la parcelle à l'étude. Ce dernier concerne la construction neuve de vestiaires pour club de sport.

L'extrait de plan de masse joint au permis de construire et communiqué par la commune est présenté sur la figure 9.

Figure 6 : Emprise du projet de vestiaire sportif selon l'extrait de plan de masse joint au permis de construire n°PC8305406DC039

5 – Consultation de la Préfecture

La consultation des éventuels dossiers présents en Préfecture n'a pu être réalisée dans les délais de l'étude (absence de réponse au mail du 31/01/2018).

6 – Accidents environnementaux

D'après la base de données ARIA, gérée par le BARPI, 4 accidents/incidents sont recensés sur la commune de LA FARLEDE.

Il s'agit des évènements suivants :

- 2017 : Conduite de gaz arrachée.
- 2011 : Incendie dans des bureaux situés au rez-de-chaussée d'une blanchisserie industrielle. La salle des machines est épargnée.
- 1998 : Inflammation spontanée d'un fut de 200 L de solvants provoquant un incendie ayant détruit l'ensemble de l'entreprise. L'entreprise stockait des produits de type : solvants, bouteilles de gaz, cuve de dérivés chloro-fluorés.
- 1995 : Incendie dans un garde-meubles.

La base de données ARIA du BARPI ne donne pas plus de précisions quant à la localisation des évènements recensés. Néanmoins, le site n'ayant pas accueilli de site ICPE par le passé, et compte tenu des évènements recensés, il est peu probable que ces accidents concernent le site d'étude.

Synthèse des sources potentielles de pollution et conception du programme d'investigations

Il n'existe ni site BASIAS ou BASOL référencé au droit du site d'étude.

Selon le service urbanisme de la Mairie de LA FARLEDE, ce site n'a pas abrité d'ancien site ICPE. Seul un permis de construire pour la création d'un vestiaire sportif au sud-est du site à l'étude a été déposé.

Les photographies aériennes ont démontré l'absence de bâtiment construit au droit du site jusqu'en 1972 où une petite construction de type habitation individuelle est présente jusqu'en 1975. Le site est principalement occupé par des bois, friches et cultures jusqu'en 1986 où la partie sud est défrichée pour accueillis une petite construction.

A partir de 1989, deux terrains de sport sont présents au centre du site, puis un parking est mis en place à partir de 2003.

La petite construction présente sur les photos aérienne n'est plus présente à ce jour.

Actuellement, le parking présent au sud du site est toujours en activité, et les deux terrains de sport sont occupés par des gens du voyage.

Les éventuelles pollutions que l'on pourrait retrouver au droit de site seraient liées à l'apport éventuel de remblais de mauvaise qualité sur l'ensemble du site ainsi qu'à l'activité de parking en partie sud et de stationnement illégal de véhicules au centre du site.

Ces pollutions sont supposées et non ponctuelles.

Le programme analytique couvrira donc la gamme des polluants les plus couramment rencontrés dans les sols :

- Métaux : arsenic, cadmium, chrome, cuivre, mercure, nickel, plomb, zinc,
- Hydrocarbures totaux C₅-C₁₀ et C₁₀-C₄₀,
- Hydrocarbures Aromatiques Polycycliques (HAP),
- Benzène, Toluène, Ethylbenzène, Xylènes (BTEX),
- Composés Organo-Halogénés Volatils (COHV),
- Polychlorobiphényles (PCB).

Les activités et installations recensés sur le site sont synthétisées dans le tableau suivant.

Tableau 4 : Synthèse des sources potentiellement polluantes recensées sur site

Exploitant	Années	Activités / stockages	Sources d'informations	Localisation	Typologie de pollution suspectée	Milieux potentiellement impactés	N° sur plan
Non connu	2003 à nos jours	Zone de parking		Partie sud du site	Hydrocarbures, métaux	Sols	I
Non connu	1989 à nos jours	Construction de deux terrains de sport		Au centre du site	Eventuel apport de remblais de mauvaise qualité	Sols	2
14011 COIIIIU	De nos jours	Occupation sauvage des anciens terrains de sport (présence de véhicules)	■ Informations communiquée par la CCI du VAR	Terrains de sport	Hydrocarbures, métaux, solvants	Sols	2

Photographies aériennes	-	Autres évènements
-------------------------	---	-------------------

Figure 7 : Synthèse cartographique des sources potentielles de pollution recensées

Reconnaissance de la qualité des sols (A200)

I – Stratégie d'investigations

Les investigations réalisées sur le secteur d'étude ont consisté en la réalisation de 15 sondages de sols à la pelle mécanique conduits jusqu'à une profondeur de 2 m maximum et de prélèvements au droit de deux sondages profonds réalisés au carottier rotatif dans le cadre de l'étude géotechnique, conduits jusqu'à une profondeur de 6 m.

Les sondages ont été réalisés selon la stratégie définie à l'issue de l'étude historique et documentaire réalisées par FONDASOL Eau et Environnement.

La localisation des sondages est présentée dans la figure ci-après.

L'ensemble de ces données de terrain a été consigné et est présenté en annexes 1 et 2.

2 – Observations de terrain

Les relevés lithologiques ont mis en évidence la présence de quelques DIB (carrelage) au droit de l'échantillon PM3 (1.6-2).

Figure 8 : Localisation des investigations (Source : Plan de projet transmis par le client datant du 19/02/2018)

3 – Analyses en laboratoire

3.1 – Programme analytique

Sur la base des observations de terrain, 18 échantillons de sols ont été sélectionnés afin d'obtenir une caractérisation de l'ensemble des profondeurs et transmis au laboratoire pour analyses.

Ainsi, les échantillons envoyés en analyses et les paramètres recherchés sont :

Tableau 5 : Synthèse du programme analytique

Échantillons	Paramè	tres recherchés
Echantillons	Pack ISDI ¹	Pack ISDI Etendus ²
PMI (I-I.7)		X
PM2 (0.6-1.3)		X
PM3 (1.6-2)		X
PM4 (1.2-2)		X
PM5 (0.2-1.2)		X
PM6 (0.1-0.4)		X
PM7 (1.3-2)		X
PM8 (0.15-0.3)		X
PM9 (0.9-1.1)		X
PM10 (0.1-0.9)		X
PM11 (0.1-0.8)		X
PM12 (0.3-0.7)		X
PM13 (0.4-1.4)		X
PM14 (0.2-0.4)		X
PM15 (0-0.15)		X
CRI(0-0.7)	X	
CRI(2-3)	X	
CR2(0.2-I)	X	

Les bordereaux d'analyses sur les sols sont présentés en annexe 3. Le tableau suivant présente la synthèse des résultats et la comparaison aux valeurs de références précitées.

¹ analyses sur brut : Carbone Organique Total (COT), HAP, BTEX, PCB, Hydrocarbures totaux C10-C40, test de lixiviation : COT, 12 métaux lourds, chlorures, sulfates, fraction soluble, indice phénol, fluorures.

² pack ISDI + HCT C5-C10, COHV, 12 Métaux sur brut

4 – Examen de la qualité des sols

4.1 – Valeurs de référence

Conformément à la méthodologie pour la gestion des sites et sols pollués, nous rappelons que les concentrations doivent être comparées en priorité au bruit de fond ou fond géochimique local.

À cette fin, les résultats sont comparés entre eux mais également :

- pour les métaux, les résultats d'analyses sur les sols sont comparés à titre indicatif, à la gamme de valeurs du bruit de fond pédogéochimique issues du programme ASPITET,
- en l'absence de valeur caractérisant le bruit de fond pour les autres substances, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.

4.2 – Résultats

Echantillons			PMI (I-I.7)	PM2 (0.6-1.3)	PM3 (1.6-2)	PM4 (1.2-2)	PM5 (0.2-1.2)	PM6 (0.1-0.4)	PM7 (1.3-2)	PM8 (0.15-0.3)	PM9 (0.9-1.1)
Date de prélèvements			15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018
Faciès	Unité	Bruit de fond géochimique (I)	Argile limono- graveleuse rouge. Grès et matrière organique.	Argile graveleuse marron-orangée.	Remblais limono- graveleux gris à noirâtre.	Pellite limoneuse- grèseuse rouge.	Remblais limonograveleux marron.	Remblais limonograveleux marron.	Argile limono- graveleuse rouge et blocs de grès.	Remblais argilo- graveleus marron. Morceau de verre.	Graves limoneuses marron-rouge.
Indice organoleptique			-	-	DIB	-	-	-		-	-
Paramètre Matière sèche	%		83.9	86.2	83.8	88.3	86.7	88.3	91.5	87.6	91
COT Carbone Organique Total	mg/kg MS		5770	3920	11900	2200	2670	7530	1890	9250	1200
Métaux Lourds				l				l			
Antimoine	mg/kg MS	-	<1.00	<1.00	< .00	<1.00	<1.00	< .00	<1.00	< .00	<1.00
Arsenic Baryum	mg/kg MS mg/kg MS	25	9.03 237	7.63 89.4	10.6	12.9 302	8.82 178	10.1 98.7	12.6	10.5	7.81
Cadmium	mg/kg MS	0.45	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.59	<0.40
Chrome	mg/kg MS	90	10.5	7.57	9.92	9.03	10.9	20.6	9.48	26.3	9.58
Cuivre Mercure	mg/kg MS mg/kg MS	20 0.1	<0.10	17.6 <0.10	52.8 <0.10	5.76	8.05	52.3 0.14	5.98	36.2 0.46	<0.10
Molybdène	mg/kg MS	-	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	< .00
Nickel	mg/kg MS	60	6.79	5.08	7.49	9.56	10.9	18	9.7	14.7	12.3
Plomb Sélénium	mg/kg MS mg/kg MS	50 0.7	58.3	36.8 <1.00	51.9 <1.00	30.5	31.6 <1.00	35.6	39.6	46.4 < 1.00	72.7
Zinc	mg/kg MS	100	25.6	20.5	59.7	32.6	33.9	45.1	44.7	80.4	41.4
Composés Organo Halogénés Volati				- I -	- 	- 	-	- I -	_	-	
Dichlorométhane Chlorure de vinyle	mg/kg MS mg/kg MS		<0.06 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05
I, I - Dichloroéthylène	mg/kg MS		<0.02	<0.10	<0.10	<0.10	<0.02	<0.02	<0.02	<0.02	<0.02
Trans-1,2-dichloroéthylène	mg/kg MS		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
cis 1,2-Dichloroéthylène Chloroforme	mg/kg MS		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachlorométhane	mg/kg MS mg/kg MS		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
I,I-Dichloroéthane	mg/kg MS		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
I,2-dichloroéthane	mg/kg MS		<0.05 <0.10	<0.05 <0.10	<0.05	<0.05 <0.10	<0.05 <0.10	<0.05 <0.10	<0.05 <0.10	<0.05 <0.10	<0.05
1,1,1-trichloroéthane 1,1,2-Trichloroéthane	mg/kg MS mg/kg MS		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Trichloroéthylène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroéthylène	mg/kg MS		<0.05 <0.20	<0.05 <0.20	<0.05 <0.20	<0.05 <0.20	<0.05 <0.20	<0.05 <0.20	<0.05 <0.20	<0.05 <0.20	<0.05 <0.20
Bromochlorométhane Dibromométhane	mg/kg MS mg/kg MS		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
I,2-Dibromoéthane	mg/kg MS		<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Bromoforme (tribromométhane)	mg/kg MS		<0.20	<0.20 <0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichlorométhane Dibromochlorométhane	mg/kg MS mg/kg MS		<0.20 <0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20
Somme des COHV	mg/kg MS		=	-	-	-	-	-	=	-	-
BTEX	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzène Toluène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzène	mg/kg MS		< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylène	mg/kg MS		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
m+p-Xylène Somme des BTEX	mg/kg MS mg/kg MS		<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Hydrocarbures Volatils		1		T	T	T		T			
Hydrocarbures C5-C10 Fraction C5-C8	mg/kg MS mg/kg MS		<1.00	<1.00	<1.00	<1.00	<1.00 <1.00	<1.00	<1.00	<1.00	<00.1>
Fraction >C8-C10	mg/kg MS		<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Hydrocarbures Totaux		1									
Hydrocarbures totaux C10-C40 Fraction C10-C16	mg/kg MS mg/kg MS		<15.0 <4.00	15 6.51	<15.0 <4.00	<15.0 <4.00	<15.0 <4.00	<21.3 <4.00	<15.0 <4.00	<15.0 <4.00	<17.8 <4.00
Fraction >C16-C22	mg/kg MS		<4.00	0.39	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Fraction >C22-C30	mg/kg MS		<4.00	1.58	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Fraction >C30-C40 Hydrocarbures Aromatiques Polycy	mg/kg MS	P)	<4.00	6.53	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00
Naphtalène	mg/kg MS	,	<0.05	<0.05	<0.05	<0.05	<0.05	<0.055	<0.05	<0.05	<0.053
Acénaphthylène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.061	<0.05	<0.05	<0.059
Acénaphtène Fluorène	mg/kg MS mg/kg MS		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.07 <0.061	<0.05 <0.05	<0.05 <0.05	<0.068 <0.059
Phénanthrène	mg/kg MS		0.071	<0.05	0.13	<0.05	<0.05	<0.071	<0.05	<0.05	<0.069
Anthracène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.07	<0.05	<0.05	< 0.067
Fluoranthène Pyrène	mg/kg MS mg/kg MS		<0.05 <0.05	<0.05 <0.05	0.13	<0.05 <0.05	<0.05 <0.05	0.069 <0.061	<0.05 <0.05	0.15	<0.059 <0.059
Benzo-(a)-anthracène	mg/kg MS		<0.05	<0.05	0.059	<0.05	<0.05	<0.067	<0.05	0.12	<0.057
Chrysène	mg/kg MS		<0.05	<0.05	0.058	<0.05	<0.05	<0.089	< 0.05	0.15	<0.076
Benzo(b)fluoranthène Benzo(k)fluoranthène	mg/kg MS mg/kg MS		<0.05 <0.05	<0.05 <0.05	0.081 <0.05	<0.05 <0.05	<0.05 <0.05	<0.078 <0.08	<0.05 <0.05	0.27	<0.067 <0.068
Benzo(a)pyrène	mg/kg MS		<0.05	<0.05	0.12	<0.05	<0.05	<0.067	<0.05	0.12	<0.057
Dibenzo(a,h)anthracène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.076	<0.05	0.055	<0.065
Benzo(ghi)Pérylène Indeno (1,2,3-cd) Pyrène	mg/kg MS mg/kg MS		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.076 <0.078	<0.05 <0.05	0.085 0.097	<0.065 <0.066
Somme des HAP	mg/kg MS		0.071	<0.05	0.73	<0.05	<0.05	0.069	<0.05	1.3	<0.076
РСВ				- I -	- 	- 	-	- I -	_	-	
PCB 28 PCB 52	mg/kg MS mg/kg MS		<0.01 <0.01	<0.01	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.0 l	0.0> 0.0>
PCB 101	mg/kg MS		<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01
PCB II8	mg/kg MS		<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.0	< 0.0
PCB 138 PCB 153	mg/kg MS mg/kg MS		<0.01 <0.01	<0.01	<0.01	<0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.0 l	0.0> 0.0>
	6,1.6 1 13										
PCB 180	mg/kg MS		< 0.0	<0.01	<0.01	<0.01	< 0.0	< 0.02	< 0.0	< 0.0	< 0.0

(1) : Maximum de bruit de fond géochimique issu du référentiel des données CIRE Ile-de-France, et du programme ASPITET. - (2) : Bruit de fond mentionné par l'INERIS

Tableau 6 : Résultats analytiques sur brut de l'ensemble des sondages (1/2)

Echantillons			PM10 (0.1-0.9)	PMII (0.1-0.8)	PM12 (0.3-0.7)	PM13 (0.4-1.4)	PM14 (0.2-0.4)	PM15 (0-0.15)	CRI (0-0.7)	CRI (2-3)	CR2 (0.2-I)
Date de prélèvements			15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/02/2018	15/02/2018	15/02/2018
Faciès	Unité	Bruit de fond géochimique (I)	Argile Limono- graveleuse (grès) marron-rouge.	Argile grèseuse marron-rouge - verdâtre	Argile grèseuse	Remblais limoneux- graveleux marrons	Remblais limono- sablo-graveleux marron/rouge	Sables et graviers beiges	Remblais sablo- limono-argileux brus à gris/beige. Quelques graves.	Pélites géseuses fracturées.	Argiles graveleuses bordeau.
Indice organoleptique			-	-	-	-	-	-	-	-	-
Paramètre	ı		I						I		
Matière sèche	%		95 1350	91.4	87.9 3890	88.9	87.7 7080	94.4 17700	92 7750	97.8	95
COT Carbone Organique Total Métaux Lourds	mg/kg MS		1350	<1000	3890	10600	7080	17700	7750	<1000	<1000
Antimoine	mg/kg MS	-	< .00	<1.00	<1.00	<1.00	< .00	< .00	-	-	-
Arsenic	mg/kg MS	25	9.94	13.3	9.06	10.8	9.76	3.04	-	-	-
Baryum	mg/kg MS	-	712	152	267	92	86.1	16.3	-	-	-
Cadmium Chrome	mg/kg MS mg/kg MS	90	<0.40	<0.40 7.86	<0.40	0.43	0.53 22.8	<0.40 9.17	-	-	-
Cuivre	mg/kg MS	20	<5.00	<5.00	30.9	48.2	33.1	5.79	-	-	-
Mercure	mg/kg MS	0.1	<0.10	<0.10	0.19	0.27	0.13	<0.10	-	-	-
Molybdène	mg/kg MS	- 60	<1.00 23.9	<1.00 8.27	<1.00 9.77	<1.00 17.7	<1.00 17.8	<1.00 5.82	-	=	-
Nickel Plomb	mg/kg MS mg/kg MS	50	39.8	30	32.9	39.8	31.8	5.52	-	-	-
Sélénium	mg/kg MS	0.7	< .00	< .00	<1.00	<1.00	< .00	< .00		=	-
Zinc	mg/kg MS	100	37.4	43.2	54.7	56.9	58.6	13.9	-	-	-
Composés Organo Halogénés Volati Dichlorométhane	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			
Chlorure de vinyle	mg/kg MS		<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	-	-	-
I,I-Dichloroéthylène	mg/kg MS		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-	-
Trans-1,2-dichloroéthylène	mg/kg MS		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-	-
cis 1,2-Dichloroéthylène Chloroforme	mg/kg MS mg/kg MS		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-	-
Tetrachlorométhane	mg/kg MS		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	-
I,I-Dichloroéthane	mg/kg MS		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-	-
I,2-dichloroéthane I,1,1-trichloroéthane	mg/kg MS mg/kg MS		<0.05	<0.05	<0.05	<0.05 <0.10	<0.05	<0.05	-	-	-
1,1,2-Trichloroéthane	mg/kg MS		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	-	-
Trichloroéthylène	mg/kg MS		< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-
Tetrachloroéthylène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-
Bromochlorométhane Dibromométhane	mg/kg MS mg/kg MS		<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	-	-	-
I,2-Dibromoéthane	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-
Bromoforme (tribromométhane)	mg/kg MS		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-		-
Bromodichlorométhane Dibromochlorométhane	mg/kg MS		<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	-	=	-
Somme des COHV	mg/kg MS mg/kg MS			-			-		-	-	-
ВТЕХ											
Benzène	mg/kg MS		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
Toluène Ethylbenzène	mg/kg MS mg/kg MS		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
o-Xylène	mg/kg MS		< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
m+p-Xylène	mg/kg MS		< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Somme des BTEX Hydrocarbures Volatils	mg/kg MS		<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Hydrocarbures C5-C10	mg/kg MS		<1.00	<1.00	<1.00	<1.00	< 1.00	< .00	-	-	-
Fraction C5-C8	mg/kg MS		< .00	< .00	< .00	< .00	< .00	< .00	-	-	-
Fraction >C8-C10 Hydrocarbures Totaux	mg/kg MS		<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	-	-
Hydrocarbures totaux C10-C40	mg/kg MS		< 5.0	< 9.0	<20.5	<20.1	<15.0	< 5.0	18.6	< 5.0	< 5.0
Fraction C10-C16	mg/kg MS		<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	1.95	<4.00	<4.00
Fraction >C16-C22 Fraction >C22-C30	mg/kg MS mg/kg MS		<4.00 <4.00	<4.00 <4.00	<4.00 <4.00	<4.00 <4.00	<4.00 <4.00	<4.00 <4.00	3.44 7.54	<4.00 <4.00	<4.00 <4.00
Fraction >C30-C40	mg/kg MS		<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	5.64	<4.00	<4.00
Hydrocarbures Aromatiques Polycy	cliques (HAI	P)									
Naphtalène	mg/kg MS		<0.05 <0.05	<0.05 <0.05	<0.057 <0.064	<0.05 <0.055	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Acénaphthylène Acénaphtène	mg/kg MS mg/kg MS		<0.05	<0.059	<0.004	<0.033	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorène	mg/kg MS		<0.05	<0.05	<0.064	<0.055	<0.05	<0.05	<0.05	<0.05	<0.05
Phénanthrène	mg/kg MS		<0.05	<0.059	<0.075	<0.065	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracène Fluoranthène	mg/kg MS mg/kg MS		<0.05 <0.05	<0.058 <0.05	<0.073 <0.064	<0.063 0.087	<0.05 0.063	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Pyrène	mg/kg MS		<0.05	<0.05	<0.064	0.084	0.085	<0.05	<0.05	<0.05	<0.05
Benzo-(a)-anthracène	mg/kg MS		< 0.05	<0.067	< 0.063	<0.066	0.11	<0.05	< 0.05	< 0.05	<0.05
Chrysène Benzo(b)fluoranthène	mg/kg MS mg/kg MS		<0.05 <0.05	<0.088 <0.077	<0.083 <0.073	<0.086	0.12	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Benzo(k)fluoranthène	mg/kg MS		<0.05	<0.077	<0.075	<0.078	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrène	mg/kg MS		<0.05	<0.067	<0.063	<0.066	0.086	<0.05	<0.05	< 0.05	<0.05
Dibenzo(a,h)anthracène	mg/kg MS		<0.05	<0.075	<0.071	<0.074	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(ghi)Pérylène Indeno (1,2,3-cd) Pyrène	mg/kg MS mg/kg MS		<0.05 <0.05	<0.075 <0.076	<0.071 <0.072	<0.074 <0.075	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Somme des HAP	mg/kg MS		<0.05	<0.088	<0.083	0.27	0.55	<0.05	<0.05	<0.05	<0.05
РСВ											
PCB 28 PCB 52	mg/kg MS mg/kg MS		<0.0 l	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01
PCB 101	mg/kg MS		<0.01	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PCB 118	mg/kg MS		<0.01	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PCB 138 PCB 153	mg/kg MS mg/kg MS		<0.01 <0.01	<0.01 <0.02	<0.02 <0.02	<0.01	<0.0 l	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
PCB 180	mg/kg MS		<0.01	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
SOMME PCB (7)	mg/kg MS		<0.01	<0.02	<0.02	<0.01	<0.0	<0.0	<0.0	<0.01	<0.01
		t de fond géoch							(2) 0 : 1		

(1) : Maximum de bruit de fond géochimique issu du référentiel des données CIRE lle-de-France, et du programme ASPITET. - (2) : Bruit de fond mentionné par l'INERIS

Tableau 7 : Résultats analytiques sur brut de l'ensemble des sondages (2/2)

4.3 – Présentation et interprétation des résultats

Les analyses de sols au niveau de ces 18 échantillons mettent en évidence :

- la présence d'anomalies ponctuelles en cadmium, cuivre, et plomb au droit de 8 des 15 échantillons analysés pour ces paramètres ;
- la présence d'anomalies en mercure, composé potentiellement volatil, au droit des échantillons PM6 (0.1-0.4), PM8 (0.15-0.3), PM12 (0.3-0.7), PM13 (0.4-1.4) et PM14 (0.2-0.4), avec une teneur maximale de 0,46 mg/kg au droit de l'échantillon PM8 (0,15-0,30);
- la quantification d'hydrocarbures totaux (HCT C₁₀-C₄₀) au droit des échantillons PM2 (0.6-1.3) et CR1 (0-0.7) avec des teneurs de l'ordre de grandeur de la limite de quantification du laboratoire (<15 mg/kg);
- la présence de traces d'HAP au droit de 6 échantillons (PMI (I-I.7), PM3 (I.6-2), PM6 (0.I-0.4), PM8 (0.I5-0.3), PMI3 (0.4-I.4) et PMI4 (0.2-0.4)) avec des teneurs de l'ordre de grandeur de la limite de quantification du laboratoire (<0,05 mg/kg);
- l'absence de quantification de BTEX, de COHV, d'hydrocarbures volatils (C₅-C₁₀) et de PCB sur l'ensemble des échantillons.

Les échantillons PM8 (0.15-0.3) et PM12 (0.3-0.7) sont localisés directement sous le futur espace « soins thalasso », locaux techniques et vestiaires. Ces derniers présentent des anomalies en mercure, composé potentiellement volatil, supérieures aux valeurs de bruit de fond moyen selon le programme ASPITET. On note cependant une atténuation de cette teneur avec la profondeur avec une teneur en mercure de 0,46 mg/kg au droit des remblais de surface en PM8 (0.15-0.3), et une teneur de 0,19 mg/kg au droit des terrains naturels sous-jacents en PM12 (0.3-0.7).

Compte tenu du projet d'aménagement tel qu'il nous a été présenté, à l'exception des échantillons PM8 (0.15-0.3) et PM12 (0.3-0.7), l'ensemble des analyses présentées concernent des terres destinées à être excavées pour la réalisation des niveaux de soussol.

5 – Détermination de la filière d'élimination

5.1 – Critères d'acceptation en Installation de Stockage

Afin d'appréhender la gestion de terres qui seront potentiellement excavées dans le cadre du projet d'aménagement, les concentrations sur le sol brut ont été comparées aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux Installations de Stockage de Déchets Inertes (ISDI) ainsi qu'au seuils d'admission en ISDND et ISDD établis par la FNADE³.

Dans le cadre de la présente étude, afin d'appréhender d'éventuels surcoûts d'évacuations, 18 tests de lixiviation ont été réalisés sur cette campagne de prélèvements.

Les analyses sur brut et sur lixiviat de sol de ces échantillons sont présentées dans les tableaux ci-après.

En sus des analyses en laboratoire, les indices organoleptiques relevés lors des prélèvements sont présentés dans les tableaux ci-après. En effet, l'aspect de sols notamment noirs ou odorants peut amener les ISDI à refuser les terres (malgré des teneurs en-dessous des seuils d'acceptation).

-

³ Fédération Nationale des Activités de Dépollution et de l'Environnement

5.2 – Présentation des résultats et comparaison aux seuils d'acceptation

Tableau 8 : Résultats analytiques sur brut et sur éluat et comparaison avec les seuils d'acceptation en Installation de stockage de déchets (1/2)

Echantillons					PMI (I-I.7)	PM2 (0.6-1.3)	PM3 (1.6-2)	PM4 (1.2-2)	PM5 (0.2-1.2)	PM6 (0.1-0.4)	PM7 (1.3-2)	PM8 (0.15-0.3)	PM9 (0.9-1.1)
Date de prélèvements					15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018
Faciès	Unité	Seuils ISDD - Décision CE 19/12/2002 (1)	Seuils ISDND - Décision CE 19/12/2002 (1)	Seuils ISDI - Arrêté du 12/12/2014 (2)	Argile limono- graveleuse rouge. Grès et matrière organique.	Argile graveleuse marron-orangée.	Remblais limono- graveleux gris à noirâtre.	Pellite limoneuse- grèseuse rouge.	Remblais limono- graveleux marron.	Remblais limono- graveleux marron.	Argile limono- graveleuse rouge et blocs de grès.	Remblais argilo- graveleus marron. Morceau de verre.	Graves limoneuse marron-rouge.
Indice organoleptique					-	-	DIB	-	-	-	-	-	-
Paramètres												•	
Analyses sur brut													
Matière sèche	mg/kg Ms	30	30		83.9	86.2	83.8	88.3	86.7	88.3	91.5	87.6	91
COT Carbone Organique Total	mg/kg Ms	60 000	50 000	30 000	5 770	3 920	11 900	2 200	2 670	7 530	I 890	9 250	I 200
Hydrocarbures Aromatiques Polycy	cliques (HAP	')											
Somme HAP (EPA)	mg/kg Ms	500	100	50	0.071	< 0.05	0.73	< 0.05	< 0.05	0.069	< 0.05	1.3	<0.076
втех													
Somme BTEX	mg/kg Ms		30	6	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	<0.0500
Hydrocarbures Totaux				_			_		_				
Hydrocarbures totaux C10-C40	mg/kg Ms	10 000	2 000	500	<15.0	15	<15.0	<15.0	<15.0	<21.3	<15.0	<15.0	<17.8
РСВ													
Somme PCB (7)	mg/kg Ms	50	10	I	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01
Analyses sur éluat													
Métaux Lourds													
Antimoine	mg/kg Ms	5	0.7	0.06	0.012	0.006	0.034	0.008	0.006	0.006	0.007	0.019	< 0.005
Arsenic	mg/kg Ms	25	2	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Baryum	mg/kg Ms	300	100	20	1.22	0.79	0.47	0.41	1.01	1.64	1.74	2.1	0.72
Cadmium	mg/kg Ms	5	1	0.04	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002	< 0.002	< 0.002	<0.002
Chrome	mg/kg Ms	70	10	0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cuivre	mg/kg Ms	100	50	2	<0.20	<0.20	<0.20	<0.20	<0.20	0.23	<0.20	0.47	<0.20
Mercure	mg/kg Ms	2	0.2	0.01	< 0.001	<0.001	<0.001	<0.001	< 0.00	<0.001	< 0.00	0.003	<0.001
Molybdène	mg/kg Ms	30	10	0.5	0.02	0.011	0.088	0.014	0.018	0.036	0.016	0.033	< 0.010
Nickel	mg/kg Ms	40	10	0.4	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Plomb	mg/kg Ms	50	10	0.5	0.23	<0.10	<0.10	<0.10	<0.10	0.26	0.14	0.36	<0.10
Sélénium	mg/kg Ms	7	0.5	0.1	< 0.0	< 0.0	< 0.01	< 0.0	< 0.0	<0.01	<0.01	0.011	<0.01
Zinc	mg/kg Ms	200	50	4	0.24	<0.20	<0.20	<0.20	<0.20	<0.20	0.25	0.5	<0.20
Balance ionique	-												
рН		entre 5 et 13			8.2	8.3	8.2	8.3	8	8.3	8.9	8.7	8.4
СОТ	mg/kg Ms	I 000	800	500	79	91	68	64	85	110	89	140	72
Fraction soluble	mg/kg Ms	100 000	60 000	4 000	3 670	5 720	15 000	<2000	4 170	11 900	10 000	9 510	4 010
Chlorures	mg/kg Ms	25 000	I 500	800	24.9	18	99.8	10.1	25	28.7	53.1	57.1	17.2
Fluorures	mg/kg Ms	500	150	10	9.9	5.18	<5.00	7.72	10.4	8.6	8.92	7.26	7.31
Sulfates	mg/kg Ms	50 000	20 000	1 000	159	169	9 310	135	192	150	296	236	91
Indice phénol	mg/kg Ms	100	50	1	<0.50	<0.51	<0.50	<0.50	<0.51	<0.50	<0.51	<0.50	<0.50
·	- -				1	1	1	1	1	<u> </u>		1	1
Filière de prise en charge recomma	. al £				ISDI	ISDI	ISDI+ ou ISDND	ISDI	ISDI+ ou ISDND	ISDI	ISDI	ISDI	ISDI

^{(1) :} Valeurs Seuils pour l'admission des Terres en Installations de Stockage de Déchets Inertes d'après l'arrêté du 12 décembre 2014.

(2) Valeurs seuils définies par la FNADE⁴

⁴ Fédération Nationale des Activités de Dépollution et de l'Environnement

Tableau 9 : Résultats analytiques sur brut et sur éluat et comparaison avec les seuils d'acceptation en Installation de stockage de déchets (2/2)

Echantillons					PM10 (0.1-0.9)	PM11 (0.1-0.8)	PM12 (0.3-0.7)	PM13 (0.4-1.4)	PM14 (0.2-0.4)	PM15 (0-0.15)	CRI (0-0.7)	CRI (2-3)	CR2 (0.2-I)
					15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	43146	43146	43146
Date de prélèvements					13/03/2018	13/03/2016	13/03/2016	13/03/2018	13/03/2010	13/03/2018		43140	43140
Faciès	Unité	Seuils ISDD - Décision CE 19/12/2002 (1)	Seuils ISDND - Décision CE 19/12/2002 (1)	Seuils ISDI - Arrêté du 12/12/2014 (2)	Argile Limono- graveleuse (grès) marron-rouge.	Argile grèseuse marron-rouge - verdâtre	Argile grèseuse	Remblais limoneux- graveleux marrons	Remblais limono- sablo-graveleux marron/rouge	Sables et graviers beiges	Remblais sablo- limono-argileux brus à gris/beige. Quelques graves.	Pélites géseuses fracturées.	Argiles graveleuses bordeau.
Indice organoleptique					-	-	-	-	-	-	-	-	-
Paramètres													
Analyses sur brut													
Matière sèche	mg/kg Ms	30	30		95	91.4	87.9	88.9	87.7	94.4	92	97.8	95
COT Carbone Organique Total	mg/kg Ms	60 000	50 000	30 000	I 350	<1000	3 890	10 600	7 080	17 700	7 750	<1000	< 000
Hydrocarbures Aromatiques Polycy	cliques (HAI	?)											
Somme HAP (EPA)	mg/kg Ms	500	100	50	<0.05	<0.088	<0.083	0.27	0.55	< 0.05	<0.05	<0.05	<0.05
ВТЕХ	T			•		1	T	_		T	T		
Somme BTEX	mg/kg Ms		30	6	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Hydrocarbures Totaux	ı	· · · · · · · · · · · · · · · · · · ·		•	1	1	T			T	T		•
Hydrocarbures totaux C10-C40	mg/kg Ms	10 000	2 000	500	<15.0	<19.0	<20.5	<20.1	<15.0	<15.0	19	<15.0	<15.0
РСВ				•		1	T	_		T	T		1
Somme PCB (7)	mg/kg Ms	50	10	I	<0.01	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Analyses sur éluat													
Métaux Lourds													
Antimoine	mg/kg Ms	5	0.7	0.06	< 0.005	<0.005	0.014	0.01	0.01	<0.005	0.006	< 0.005	< 0.005
Arsenic	mg/kg Ms	25	2	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.24
Baryum	mg/kg Ms	300	100	20	3.04	0.62	1.51	1.05	0.62	<0.10	0.78	0.66	0.28
Cadmium	mg/kg Ms	5	I	0.04	<0.002	<0.002	< 0.002	0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002
Chrome	mg/kg Ms	70	10	0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cuivre	mg/kg Ms	100	50	2	<0.20	<0.20	0.41	0.4	<0.20	<0.20	<0.20	<0.20	<0.20
Mercure	mg/kg Ms	2	0.2	0.01	<0.001	<0.001	< 0.00	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Molybdène	mg/kg Ms	30	10	0.5	0.036	0.052	0.02	0.02	0.026	0.175	0.099	<0.0	<0.01
Nickel	mg/kg Ms	40	10	0.4	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Plomb	mg/kg Ms	50	10	0.5	0.18	0.22	0.28	0.32	0.14	<0.10	0.16	<0.10	<0.10
Sélénium	mg/kg Ms	7	0.5	0.1	<0.01	<0.01	<0.01	<0.01	<0.0	<0.01	<0.01	<0.0	<0.01
Zinc	mg/kg Ms	200	50	4	<0.20	0.23	0.34	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Balance ionique													
рН		entre 5 et 13			8.4	9.3	8.2	7.7	8.4	10.4	8.2	8.6	8.8
СОТ	mg/kg Ms	1 000	800	500	55	<50	120	150	92	<50	130	<50	<50
Fraction soluble	mg/kg Ms	100 000	60 000	4 000	5 810	3 920	9 390	7 910	10 400	3 540	5 900	<2000	3 600
Chlorures	mg/kg Ms	25 000	I 500	800	30.4	11.1	30	27.9	19.9	< 0.0	48.9	15.5	13.6
Fluorures	mg/kg Ms	500	150	10	20.1	6.73	7.47	8.09	<5.11	<5.00	<5.02	<5.00	<5.00
Sulfates	mg/kg Ms	50 000	20 000	1 000	287	417	209	253	107	<50.0	<502	77	81
Indice phénol	mg/kg Ms	100	50	I	<0.50	<0.50	<0.51	<0.50	<0.51	<0.50	<0.50	<0.50	<0.50
Filière de prise en charge recomma	ndé				ISDI+ ou ISDND	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI	ISDI
			(1) . Valarra Carrila I	oour l'admission des Te								=,	

(1) : Valeurs Seuils pour l'admission des Terres en Installations de Stockage de Déchets Inertes d'après l'arrêté du 12 décembre 2014.

(2) Valeurs seuils définies par la FNADE⁵

⁵ Fédération Nationale des Activités de Dépollution et de l'Environnement

5.3 – Interprétation des résultats d'analyses

Les analyses ont mis en évidence la présence de dépassements de certains critères de l'arrêté du 12 décembre 2014 relatif aux Installations de Stockage de Déchets Inertes (ISDI) : sulfates, fraction soluble et fluorures sur lixiviats.

En cas d'excavation des terres du site, les filières d'évacuation à envisager sont présentées dans le tableau ci-dessous.

Tableau 10 : Filières d'évacuation possibles

Échantillon	Critère discriminant selon l'arrêté du 12/12/2014	Filière d'évacuation possible		
PMI (I-I.7)	-	ISDI		
PM2 (0.6-1.3)	Fraction soluble	ISDI		
PM3 (1.6-2)	Fraction soluble et sulfates Quelques DIB	ISDI+ ou ISDND		
PM4 (1.2-2)	-	ISDI		
PM5 (0.2-1.2)	Fraction soluble et fluorures sur lixiviats	ISDI+ ou ISDND		
PM6 (0.1-0.4)	Fraction soluble	ISDI		
PM7 (1.3-2)	Fraction soluble	ISDI		
PM8 (0.15-0.3)	Fraction soluble	ISDI		
PM9 (0.9-1.1)	Fraction soluble	ISDI		
PM10 (0.1-0.9)	Fraction soluble et fluorures sur lixiviats	ISDI+ ou ISDND		
PMII (0.1-0.8)	-	ISDI		
PM12 (0.3-0.7)	Fraction soluble	ISDI		
PM13 (0.4-1.4)	Fraction soluble	ISDI		
PM14 (0.2-0.4)	Fraction soluble	ISDI		
PM15 (0-0.15)	-	ISDI		
CRI (0-0.7)	Fraction soluble	ISDI		
CRI (2-3)	-	ISDI		
CR2 (0.2-1)	-	ISDI		

Schéma conceptuel

Le schéma conceptuel a pour objectif de définir les enjeux sanitaires et environnementaux, en illustrant les relations entre les sources potentielles de pollution, les voies de transfert, les milieux d'exposition susceptibles d'être atteints et les cibles concernées.

I – Présentation de l'aménagement

Le projet prévoit l'aménagement de la totalité de la parcelle, dont la surface est d'environ 3 hectares, avec la construction :

- d'un parking souterrain en R-1 sur la quasi-totalité du site, et en R-2 dans sa partie est.
- d'un business center à usage de bureaux, crèche et conciergerie en R+5,
- d'une résidence de services en R+5 à usage de commerces en RDC, et de logements en étages,
- d'un complexe sportif en R+2, à usage de locaux techniques, vestiaires, soins thalasso et parking en R-1, commerces, terrains de sports, piscine, etc. en RDC, R+1 et R+2.
- De voiries et espaces verts.

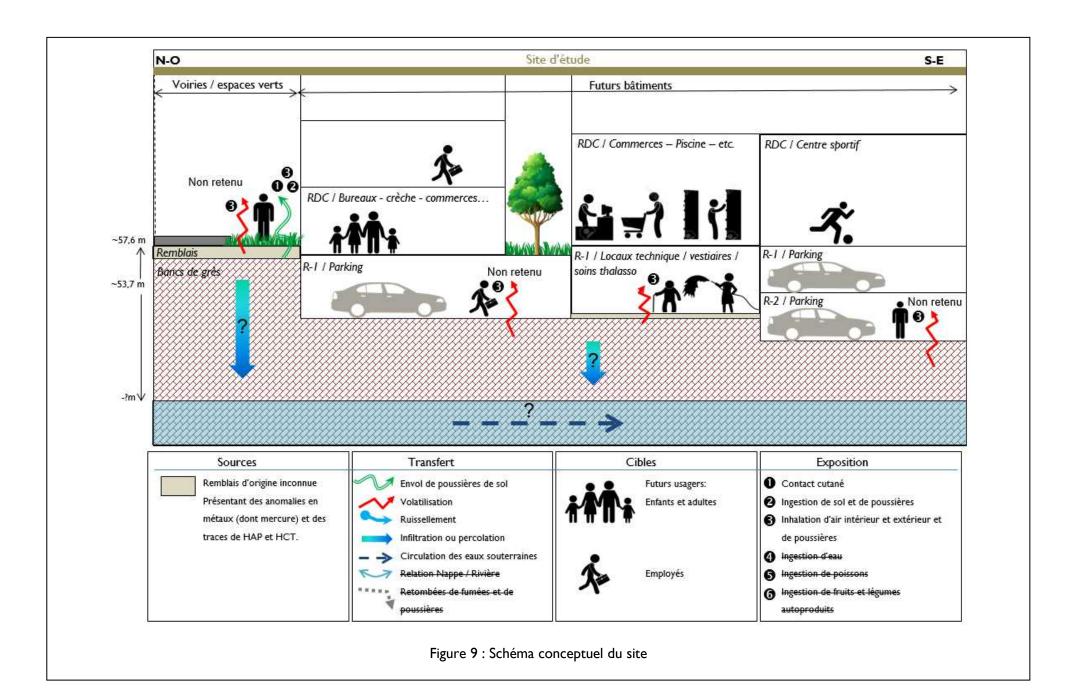
2 – Impacts des milieux

Les investigations ont mis en évidence :

- la présence de remblais présentant des anomalies en métaux dont mercure (potentiellement volatil),
- la présence de traces d'HAP et d'HCT C₁₀-C₄₀ dans les sols

3 - Voies de transfert et milieux d'exposition

Les voies de transfert potentielles sont :


- le contact direct et l'envol de poussières depuis les secteurs non revêtus,
- la volatilisation et la remontée de vapeurs,
- l'infiltration / la percolation à travers la zone non saturée en eau du sol puis transfert par les eaux souterraines.

Ainsi, les milieux d'exposition susceptibles d'être atteints sont les sols, les eaux souterraines et l'air ambiant.

4 – Cibles concernées

Les cibles exposées aux substances présentes sont les adultes employés et les visiteurs (enfants et adultes) fréquentant le site.

Le schéma conceptuel initial du site mettant en corrélation les sources de pollution, les milieux de transfert et les cibles est présenté en figure suivante.

3ELY 18.0005 – Pièce n°001 – 1ère édition SCCV LA FARLEDE FORCE 5 – avenue du Docteur Calmette – LA FARLEDE (83) – Missions A110 et A200

Conclusion et recommandations

Dans le cadre du projet d'aménagement d'anciens terrains de sport et d'un parking à LA FARLEDE (83), une étude historique ainsi qu'une campagne d'investigation sur les sols a été réalisée.

Les résultats d'analyses ont mis en évidence :

- la présence de remblais présentant des anomalies en métaux, des traces d'HAP et d'hydrocarbures totaux.
- des dépassements de certains critères de l'arrêté du 12/12/2014 fixant les seuils d'acceptation en ISDI.

Dans le cas d'une excavation des terres concernées par ces dépassements, une évacuation directe des terres polluées en ISDI aménagée ou en ISDND serait à prévoir.

Dans la cadre de la réalisation des futurs niveaux de sous-sol, la plupart des terres seront excavées et évacuées hors site, à l'exception des terres localisées sous la future zone de soins thalassothérapie, locaux techniques et vestiaires. Ces terrains présentant une teneur en mercure non négligeable, FONDASOL Eau et Environnement, préconise la réalisation d'études complémentaires (réalisation de piézairs et prélèvements de gaz du sol) qui permettront de vérifier la compatibilité sanitaire du site vis-à-vis des aménagements et des usages projetés.

En fonction des résultats d'analyses sur les gaz du sol, il pourra être nécessaire de réaliser une Evaluation Quantitative des Risques Sanitaires (EQRS), afin d'évaluer la compatibilité sanitaire du projet avec la qualité environnementale des milieux au droit du site.

Noémie CAHEN-LAFARGE

Ingénieur Etudes Eau et Environnement

Berrei

Bastien DÈCLE

Ingénieur Développement Eau et Environnement

Conditions Générales

I. Avertissement, préambule

Toute commande et ses avenants éventuels impliquent de la part du co-contractant, ciaprès dénommé « le Client », signataire du contrat et des avenants, acceptation sans réserve des présentes conditions générales.

Les présentes conditions générales prévalent sur toutes autres, sauf conditions particulières contenues dans le devis ou dérogation formelle et explicite. Toute modification de la commande ne peut être considérée comme acceptée qu'après accord écrit du Prestataire.

2. Déclarations obligatoires à la charge du Client, (DT, DICT, ouvrages exécutés)

Dans tous les cas, la responsabilité du Prestataire ne saurait être engagée en cas de dommages à des ouvrages publics ou privés (en particulier, ouvrages enterrés et canalisations) dont la présence et l'emplacement précis ne lui auraient pas été signalés par écrit préalablement à sa mission.

Conformément au décret n° 2011-1241 du 5 octobre 2011 relatif à l'exécution de travaux à proximité de certains ouvrages souterrains, aériens ou subaquatiques de transport ou de distribution, le Client doit fournir, à sa charge et sous sa responsabilité, l'implantation des réseaux privés, la liste et l'adresse des exploitants des réseaux publics à proximité des travaux, les plans, informations et résultats des investigations complémentaires consécutifs à sa Déclaration de projet de Travaux (DT). Ces informations sont indispensables pour permettre les éventuelles DICT (le délai de réponse est de 15 jours) et pour connaître l'environnement du projet. En cas d'incertitude ou de complexité pour la localisation des réseaux sur domaine public, il pourra être nécessaire de faire réaliser, à la charge du Client. des fouilles manuelles pour les repérer. Les conséquences et la responsabilité de toute détérioration de ces réseaux par suite d'une mauvaise communication sont à la charge exclusive du Client.

Conformément à l'art L 411-1 du code minier, le Client s'engage à déclarer à la DREAL tout forage réalisé de plus de 10 m de profondeur. De même, conformément à l'article R 214-1 du code de l'environnement, le Client s'engage à déclarer auprès de la DDT du lieu des travaux les sondages et forages destinés à la recherche, à la surveillance ou au prélèvement d'eaux souterraines (piézomètres notamment).

3. Cadre de la mission, objet et nature des prestations, prestations exclues, limites de la mission

Le terme « prestation » désigne exclusivement les prestations énumérées dans le devis du Prestataire. Toute prestation différente de celles prévues fera l'objet d'un prix nouveau à négocier. Il est entendu que le Prestataire s'engage à procéder selon les moyens actuels de son art, à des recherches consciencieuses et à fournir les indications qu'on peut en attendre. Son obligation est une obligation de moyen et non de résultat au sens de la jurisprudence actuelle des tribunaux. Le Prestataire réalise la mission dans les strictes limites de sa définition donnée dans son offre (validité limitée à trois mois à compter de la date de son établissement), confirmée par le bon de commande ou un contrat signé du

La mission et les investigations éventuelles sont strictement géotechniques et n'abordent pas le contexte environnemental. Seule une étude environnementale spécifique comprenant des investigations adaptées permettra de détecter une contamination des sols et/ou des eaux souterraines.

Le Prestataire n'est solidaire d'aucun autre intervenant sauf si la solidarité est explicitement convenue dans le devis ; dans ce cas, la solidarité ne s'exerce que sur la durée de la mission. Par référence à la norme NF P 94-500, il appartient au maître d'ouvrage, au maître d'œuvre ou à toute entreprise de faire réaliser impérativement par des ingénieries compétentes chacune des missions géotechniques (successivement G1, G2, G3 et G4 et les investigations associées) pour suivre toutes les étapes d'élaboration et d'exécution du projet. Si la mission d'investigations est commandée seule, elle est limitée à l'exécution matérielle de sondages et à l'établissement d'un compte rendu factuel sans interprétation et elle exclut toute activité d'étude ou de conseil. La mission de diagnostic géotechnique G5 engage le géotechnicien uniquement dans le cadre strict des objectifs ponctuels fixés et acceptés. Si le Prestataire déclare être titulaire de la certification ISO 9001, le Client agit de telle

sorte que le Prestataire puisse respecter les dispositions de son système qualité dans la réalisation de sa mission.

4. Plans et documents contractuels

Le Prestataire réalise la mission conformément à la réglementation en vigueur lors de son offre, sur la base des données communiquées par le Client. Le Client est seul responsable de l'exactitude de ces données. En cas d'absence de transmission ou d'erreur sur ces données, le Prestataire est exonéré de toute responsabilité.

5. Limites d'engagement sur les délais

Sauf indication contraire précise, les estimations de délais d'intervention et d'exécution données aux termes du devis ne sauraient engager le Prestataire. Sauf stipulation contraire, il ne sera pas appliqué de pénalités de retard et si tel devait être le cas elles seraient plafonnées à 5% de la commande. En toute hypothèse, la responsabilité du Prestataire est dégagée de plein droit en cas d'insuffisance des informations fournies par le Client ou si le Client n'a pas respecté ses obligations, en cas de force maieure ou d'événements imprévisibles (notamment la rencontre de sols inattendus, la survenance de circonstances naturelles exceptionnelles) et de manière générale en cas d'événement extérieur au Prestataire modifiant les conditions d'exécution des prestations objet de la commande ou les rendant impossibles.

Le Prestataire n'est pas responsable des délais de fabrication ou d'approvisionnement de fournitures lorsqu'elles font l'objet d'un contrat de négoce passé par le Client ou le Prestataire avec un autre Prestataire.

6. Formalités, autorisations et obligations d'information, accès, dégâts aux ouvrages et cultures

Toutes les démarches et formalités administratives ou autres, en particulier l'obtention de l'autorisation de pénétrer sur les lieux pour effectuer des prestations de la mission sont à

la charge du Client. Le Client se charge d'une part d'obtenir et communiquer les autorisations requises pour l'accès du personnel et des matériels nécessaires au Prestataire en toute sécurité dans l'enceinte des propriétés privées ou sur le domaine public, d'autre part de fournir tous les documents relatifs aux dangers et aux risques cachés. notamment ceux liés aux réseaux, aux obstacles enterrés et à la pollution des sols et des nappes. Le Client s'engage à communiquer les règles pratiques que les intervenants doivent respecter en matière de santé, sécurité et respect de l'environnement ; il assure en tant que de besoin la formation du personnel, notamment celui du Prestataire, entrant dans ces domaines, préalablement à l'exécution de la mission. Le Client sera tenu responsable de tout dommage corporel, matériel ou immatériel dû à une spécificité du site connue de lui et non clairement indiquée au Prestataire avant toutes interventions.

Sauf spécifications particulières, les travaux permettant l'accessibilité aux points de sondages ou d'essais et l'aménagement des plates-formes ou grutage nécessaires aux matériels utilisés sont à la charge du Client.

Les investigations peuvent entraîner d'inévitables dommages sur le site, en particulier sur la végétation, les cultures et les ouvrages existants, sans qu'il y ait négligence ou faute de la part de son exécutant. Les remises en état, réparations ou indemnisations correspondantes sont à la charge du Client.

7. Implantation, nivellement des sondages

Au cas où l'implantation des sondages est imposée par le Client ou son conseil, le Prestataire est exonéré de toute responsabilité dans les événements consécutifs à ladite implantation. La mission ne comprend pas les implantations topographiques permettant de définir l'emprise des ouvrages et zones à étudier ni la mesure des coordonnées précises des points de sondages ou d'essais. Les éventuelles altitudes indiquées pour chaque sondage (qu'il s'agisse de cotes de références rattachées à un repère arbitraire ou de cotes NGF) ne sont données qu'à titre indicatif. Seules font foi les profondeurs mesurées depuis le sommet des sondages et comptées à partir du niveau du sol au moment de la réalisation des essais. Pour que ces altitudes soient garanties, il convient qu'elles soient relevées par un Géomètre Expert avant remodelage du terrain. Il en va de même pour l'implantation des sondages sur le terrain.

8. Hydrogéologie

Les niveaux d'eau indiqués dans le rapport correspondent uniquement aux niveaux relevés au droit des sondages exécutés et à un moment précis. En dépit de la qualité de l'étude les aléas suivants subsistent, notamment la variation des niveaux d'eau en relation avec la météo ou une modification de l'environnement des études. Seule une étude hydrogéologique spécifique permet de déterminer les amplitudes de variation de ces niveaux, les cotes de crue et les PHEC (Plus Hautes Eaux Connues).

9. Recommandations, aléas, écart entre prévision de l'étude et réalité en cours de travaux

Si, en l'absence de plans précis des ouvrages projetés, le Prestataire a été amené à faire une ou des hypothèses sur le projet, il appartient au Client de lui communiquer par écrit ses observations éventuelles sans quoi, il ne pourrait en aucun cas et pour quelque raison que ce soit lui être reproché d'avoir établi son étude dans ces conditions.

L'étude géotechnique s'appuie sur les renseignements reçus concernant le projet, sur un nombre limité de sondages et d'essais, et sur des profondeurs d'investigations limitées qui ne permettent pas de lever toutes les incertitudes inéluctables à cette science naturelle. En dépit de la qualité de l'étude, des incertitudes subsistent du fait notamment du caractère ponctuel des investigations, de la variation d'épaisseur des remblais et/ou des différentes couches, de la présence de vestiges enterrés. Les conclusions géotechniques ne peuvent donc conduire à traiter à forfait le prix des fondations compte tenu d'une hétérogénéité, naturelle ou du fait de l'homme, toujours possible et des aléas d'exécution pouvant survenir lors de la découverte des terrains. Si un caractère évolutif particulier a été mis en lumière (notamment glissement, érosion, dissolution, remblais évolutifs, tourbe), l'application des recommandations du rapport nécessite une actualisation à chaque étape du projet notamment s'il s'écoule un laps de temps important avant l'étape suivante.

L'estimation des quantités des ouvrages géotechniques nécessite, une mission d'étude géotechnique de conception G2 (phase projet). Les éléments géotechniques non décelés par l'étude et mis en évidence lors de l'exécution (pouvant avoir une incidence sur les conclusions du rapport) et les incidents importants survenus au cours des travaux (notamment glissement, dommages aux avoisinants ou aux existants) doivent obligatoirement être portés à la connaissance du Prestataire ou signalés aux géotechniciens chargés des missions de suivi géotechnique d'exécution G3 et de supervision géotechnique d'exécution G4, afin que les conséquences sur la conception géotechnique et les conditions d'exécution soient analysées par un homme de l'art.

10. Rapport de mission, réception des travaux, fin de mission, délais de validation des documents par le client

A défaut de clauses spécifiques contractuelles, la remise du dernier document à fournir dans le cadre de la mission fixe le terme de la mission. La date de la fin de mission est celle de l'approbation par le Client du dernier document à fournir dans le cadre de la mission. L'approbation doit intervenir au plus tard deux semaines après sa remise au Client, et est considérée implicite en cas de silence. La fin de la mission donne lieu au paiement du solde de la mission

11. Réserve de propriété, confidentialité, propriété des études, diagrammes

Les coupes de sondages, plans et documents établis par les soins du Prestataire dans le cadre de sa mission ne peuvent être utilisés, publiés ou reproduits par des tiers sans son autorisation. Le Client ne devient propriétaire des prestations réalisées par le Prestataire qu'après règlement intégral des sommes dues. Le Client ne peut pas les utiliser pour d'autres ouvrages sans accord écrit préalable du Prestataire. Le Client s'engage à maintenir confidentielle et à ne pas utiliser pour son propre compte ou celui de tiers toute information se rapportant au savoir-faire du Prestataire, qu'il soit breveté ou non, portée à sa connaissance au cours de la mission et qui n'est pas dans le domaine public, sauf accord préalable écrit du Prestataire. Si dans le cadre de sa mission, le Prestataire mettait au point une nouvelle technique, celle-ci serait sa propriété. Le Prestataire serait libre de déposer tout brevet s'y rapportant, le Client bénéficiant, dans ce cas, d'une licence non exclusive et non cessible, à titre gratuit et pour le seul ouvrage étudié.

12. Modifications du contenu de la mission en cours de réalisation

La nature des prestations et des moyens à mettre en œuvre, les prévisions des avancements et délais, ainsi que les prix sont déterminés en fonction des éléments communiqués par le client et ceux recueillis lors de l'établissement de l'offre. Des conditions imprévisibles par le Prestataire au moment de l'établissement de son offre touchant à la géologie, aux hypothèses de travail, au projet et à son environnement, à la législation et aux règlements, à des événements imprévus, survenant en cours de mission autorisent le Prestataire à proposer au Client un avenant avec notamment modification des prix et des délais. A défaut d'un accord écrit du Client dans un délai de deux semaines à compter de la réception de la lettre d'adaptation de la mission. Le Prestataire est en droit de suspendre immédiatement l'exécution de sa mission, les prestations réalisées à cette date étant rémunérées intégralement, et sans que le Client ne puisse faire état d'un préjudice. Dans l'hypothèse où le Prestataire est dans l'impossibilité de réaliser les prestations prévues pour une cause qui ne lui est pas imputable, le temps d'immobilisation de ses équipes est rémunéré par le client.

13. Modifications du projet après fin de mission, délai de validité du rapport

Le rapport constitue une synthèse de la mission définie par la commande. Le rapport et ses annexes forment un ensemble indissociable. Toute interprétation, reproduction partielle ou utilisation par un autre maître de l'ouvrage, un autre constructeur ou maître d'œuvre, ou pour un projet différent de celui objet de la mission, ne saurait engager la responsabilité du Prestataire et pourra entraîner des poursuites judiciaires. La responsabilité du Prestataire ne saurait être engagée en dehors du cadre de la mission objet du rapport. Toute modification apportée au projet et à son environnement ou tout élément nouveau mis à jour au cours des travaux et non détecté lors de la mission d'origine, nécessite une adaptation du rapport initial dans le cadre d'une nouvelle mission. Cielient doit faire actualiser le dernier rapport de mission en cas d'ouverture du chantier plus de l an après sa livraison. Il en est de même notamment en cas de travaux de terrassements, de démolition ou de réhabilitation du site (à la suite d'une contamination des terrains et/ou de la nappe) modifiant entre autres les qualités mécaniques, les dispositions constructives et/ou la répartition de tout ou partie des sols sur les emprises concernées par l'étude géotechnique.

14. conditions d'établissement des prix, variation dans les prix, conditions de paiement, acompte et provision, retenue de garantie

Les prix unitaires s'entendent hors taxes. Ils sont majorés de la T.V.A. au taux en vigueur le jour de la facturation. Ils sont établis aux conditions économiques en vigueur à la date d'établissement de l'offre. Ils sont fermes et définitifs pour une durée de trois mois. Audelà, ils sont actualisés par application de l'indice "Sondages et Forages TP 04" pour les investigations in situ et en laboratoire, et par application de l'indice « SYNTEC » pour les prestations d'études, l'Indice de base étant celui du mois de l'établissement du devis. Aucune retenue de garantie n'est appliquée sur le coût de la mission.

Dans le cas où le marché nécessite une intervention d'une durée supérieure à un mois, des factures mensuelles intermédiaires sont établies. Lors de la passation de la commande ou de la signature du contrat, le Prestataire peut exiger un acompte dont le montant est défini dans les conditions particulières et correspond à un pourcentage du total estimé des honoraires et frais correspondants à l'exécution du contrat. Le montant de cet acompte est déduit de la facture ou du décompte final. En cas de sous-traitance dans le cadre d'un ouvrage public, les factures du Prestataire sont réglées directement et intégralement par le maître d'ouvrage, conformément à la loi n°75-1334 du 31/12/1975.

Les paiements interviennent à réception de la facture et sans escompte. En l'absence de paiement au plus tard le jour suivant la date de règlement figurant sur la facture, il sera appliqué à compter dudit jour et de plein droit, un intérêt de retard égal au taux d'intérêt appliqué par la Banque Centrale Européenne à son opération de refinancement la plus récente majorée de 10 points de pourcentage. Cette pénalité de retard sera exigible sans qu'un rappel soit nécessaire à compter du jour suivant la date de règlement figurant sur la facture.

En sus de ces pénalités de retard, le Client sera redevable de plein droit des frais de recouvrement exposés ou d'une indemnité forfaitaire de 40 €.

Si la carence du Ćlient rend nécessaire un recouvrement contentieux, le Client s'engage à payer, en sus du principal, des frais, dépens et émoluments ordinairement et légalement à sa charge, une indemnité fixée à 15% du montant en principal TTC de la créance avec un minimum de 150 euros et ce, à titre de dommages et intérêts conventionnels et forfaitaires. Cette indemnité est due de plein droit, sans mise en demeure préalable, du seul fait du non-respect de la date.

Un désaccord quelconque ne saurait constituer un motif de non paiement des prestations de la mission réalisées antérieurement. La compensation est formellement exclue : le Client s'interdit de déduire le montant des préjudices qu'il allègue des honoraires dus.

Résiliation anticipée

Toute procédure de résiliation est obligatoirement précédée d'une tentative de conciliation. En cas de force majeure, cas fortuit ou de circonstances indépendantes du Prestataire, celui-ci a la faculté de résilier son contrat sous réserve d'en informer son Client par lettre recommandée avec accusé de réception. En toute hypothèse, en cas d'inexécution par l'une ou l'autre des parties de ses obligations, et 8 jours après la mise en demeure visant la présente clause résolutoire demeurée sans effet, le contrat peut être résilié de plein droit. La résiliation du contrat implique le paiement de l'ensemble des prestations régulièrement exécutées par le Prestataire au jour de la résiliation et en sus, d'une indemnité égale à 20 % des honoraires qui resteraient à percevoir si la mission avait été menée jusqu'à son terme.

16. Répartition des risques, responsabilités et assurances

Le Prestataire n'est pas tenu d'avertir son Client sur les risques encourus déjà connus ou ne pouvant être ignorés du Client compte tenu de sa compétence. Ainsi par exemple, l'attention du Client est attirée sur le fait que le béton armé est inévitablement fissuré, les revêtements appliqués sur ce matériau devant avoir une souplesse suffisante pour s'adapter sans dommage aux variations d'ouverture des fissures. Le devoir de conseil du Prestataire vis-à-vis du Client ne s'exerce que dans les domaines de compétence requis pour l'exécution de la mission spécifiquement confiée. Tout élément nouveau connu du Client après la fin de la mission doit être communiqué au Prestataire qui pourra, le cas échéant, proposer la réalisation d'une mission complémentaire. A défaut de communication des éléments nouveaux ou d'acceptation de la mission complémentaire, le Client en assumera toutes les conséquences. En aucun cas, le Prestataire ne sera tenu pour responsable des conséquences d'un non-respect de ses préconisations ou d'une modification de celles-ci par le Client pour quelque raison que ce soit. L'attention du Client est attirée sur le fait que toute estimation de quantités faite à partir de données obtenues par prélèvements ou essais ponctuels sur le site objet des prestations est entachée d'une incertitude fonction de la représentativité de ces données ponctuelles extrapolées à l'ensemble du site. Toutes les pénalités et indemnités qui sont prévues au contrat ou dans l'offre remise par le Prestataire ont la nature de dommages et intérêts forfaitaires, libératoires et exclusifs de toute autre sanction ou indemnisation.

Assurance décennale obligatoire

Le Prestataire bénéficie d'un contrat d'assurance au titre de la responsabilité décennale afférente aux ouvrages soumis à obligation d'assurance, conformément à l'article L.241-1 du Code des assurances. Ce contrat impose une obligation de déclaration préalable et d'adaptation de la garantie pour les ouvrages dont la valeur HT (travaux et honoraires compris) excède au jour de la déclaration d'ouverture de chantier un montant de 15 M€. Il est expressément convenu que le client a l'obligation d'informer le Prestataire d'un éventuel dépassement de ce seuil, et accepte, de fournir tous éléments d'information nécessaires à l'adaptation de la garantie. Le client prend également l'engagement, de souscrire à ses frais un Contrat Collectif de Responsabilité Décennale (CCRD), contrat dans lequel le Prestataire sera expressément mentionné parmi les bénéficiaires. Le client prendra en charge toute éventuelle surcotisation qui serait demandée au Prestataire par rapport aux conditions de base de son contrat d'assurance. Par ailleurs, les ouvrages de caractère exceptionnel, voire inusuels sont exclus du présent contrat et doivent faire l'objet d'une cotation particulière. A défaut de respecter ces engagements, le client en supportera les conséquences financières.

Le maître d'ouvrage est tenu d'informer le Prestataire de la DOC (déclaration d'ouverture de chantier).

Ouvrages non soumis à l'obligation d'assurance

Les ouvrages dont la valeur HT (travaux et honoraires compris) excède un montant de 15 M€ HT doivent faire l'objet d'une déclaration auprès du Prestataire qui en réfèrera à son assureur pour détermination des conditions d'assurance. Les limitations relatives au montant des chantiers auxquels le Prestataire participe ne sont pas applicables aux missions portant sur des ouvrages d'infrastructure linéaire, c'est-à-dire routes, voies ferrées, tramway, etc. En revanche, elles demeurent applicables lorsque sur le tracé linéaire, la/les mission(s) de l'assuré porte(nt) sur des ouvrages précis tels que ponts, viaducs, échangeurs, tunnels, tranchées couvertes... En tout état de cause, il appartiendra au client de prendre en charge toute éventuelle sur cotisation qui serait demandée au prestataire par rapport aux conditions de base de son contrat d'assurance. Toutes les conséquences financières d'une déclaration insuffisante quant au coût de l'ouvrage seront supportées par le client et le maître d'ouvrage.

Le Prestataire assume les responsabilités qu'il engage par l'exécution de sa mission telle que décrite au présent contrat. A ce titre, il est responsable de ses prestations dont la défectuosité lui est imputable. Le Prestataire sera garanti en totalité par le Client contre les conséquences de toute recherche en responsabilité dont il serait l'objet du fait de ses prestations, de la part de tiers au présent contrat, le client ne garantissant cependant le Prestataire qu'au delà du montant de responsabilité visé ci-dessous pour le cas des prestations défectueuses. La responsabilité globale et cumulée du Prestataire au titre ou à l'occasion de l'exécution du contrat sera limitée à trois fois le montant de ses honoraires sans pour autant excéder les garanties délivrées par son assureur, et ce pour les dommages de quelque nature que ce soit et quel qu'en soit le fondement juridique. Il est expressément convenu que le Prestataire ne sera pas responsable des dommages immatériels consécutifs ou non à un dommage matériel tels que, notamment, la perte d'exploitation, la perte de production, le manque à gagner, la perte de profit, la perte de contrat, la perte d'image, l'immobilisation de personnel ou d'équipements.

17. Cessibilité de contrat

Le Client reste redevable du paiement de la facture sans pouvoir opposer à quelque titre que ce soit la cession du contrat, la réalisation pour le compte d'autrui, l'existence d'une promesse de porte-fort ou encore l'existence d'une stipulation pour autrui.

18. Litiges

En cas de litige pouvant survenir dans l'application du contrat, seul le droit français est applicable. Seules les juridictions du ressort du siège social du Prestataire sont compétentes, même en cas de demande incidente ou d'appel en garantie ou de pluralité de défendeurs.

Juillet 2014

Annexes

Annexe I – Description de la campagne de prélèvements de sols

Hygiène et sécurité de l'intervention

Dans le but de sécuriser l'intervention vis-à-vis des réseaux enterrés, FONDASOL a lancé et traité les D.I.C.T.

Déroulement de la campagne

La campagne d'investigations des sols a été réalisée le 15/03/2018.

Les coordonnées géographiques des sondages sont précisées ci-après :

Sondages	Coordonnées géograph	iques (WGS84 – EPSG 4326)
Solidages	Latitude	Longitude
PMI	6.046371	43.151473
PM2	6.046161	43.151773
PM3	6.045945	43.151573
PM4	6.045266	43.15178
PM5	6.045296	43.151995
PM6	6.045568	43.151577
PM7	6.046015	43.151327
PM8	6.046588	43.151184
PM9	6.047193	43.15088
PM10	6.047637	43.150907
PMII	6.047153	43.151193
PM12	6.046687	43.151496
PM13	6.045611	43.151776
PM14	6.045948	43.151966
PM15	6.045658	43.152131

FONDASOL a veillé au bon état du matériel utilisé pour la réalisation des sondages et a nettoyé les outils avant et entre chaque utilisation. Les sondages ont été immédiatement rebouchés avec les cuttings de forage.

Les investigations ont été suivies par un ingénieur du Département Eau et Environnement de FONDASOL qui a procédé au relevé des coupes lithologiques et au prélèvement d'échantillons, à raison d'au moins un échantillon par mètre linéaire de terrains traversé et par faciès géologique rencontré. De plus, il a reporté toutes les observations utiles à la sélection des échantillons (aspect, couleur, ...) dans les fiches de prélèvement.

Transport et prise en charge des échantillons par le laboratoire

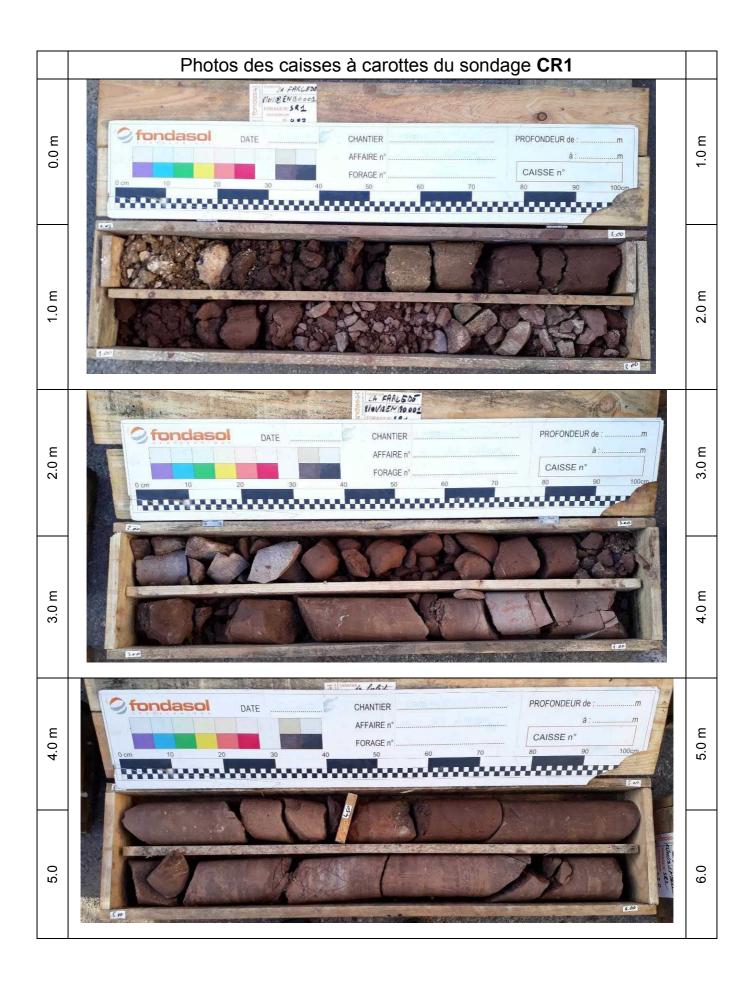
Dès leur prélèvement, les échantillons ont été conditionnés dans des flaconnages spécifiques fournis par le laboratoire (bocaux en verre 375 ml), étiquetés sur site afin d'en assurer la traçabilité et stockés en atmosphère réfrigérée afin d'assurer leur bonne conservation jusqu'à leur arrivée au laboratoire d'analyses.

Les échantillons sélectionnés ont été pris en charge par transporteur express le 15/03/2018. Les échantillons ont été réceptionnés par le laboratoire le 16/03/2018.

Les échantillons ont été analysés par le laboratoire EUROFINS, accrédité par le COFRAC.

Annexe 2 - Fiches de prélèvements des sols

Construction de bâtiments de bureaux, d'un complexe affaire n° AF.EN.18.0001 sportif et d'une résidence service

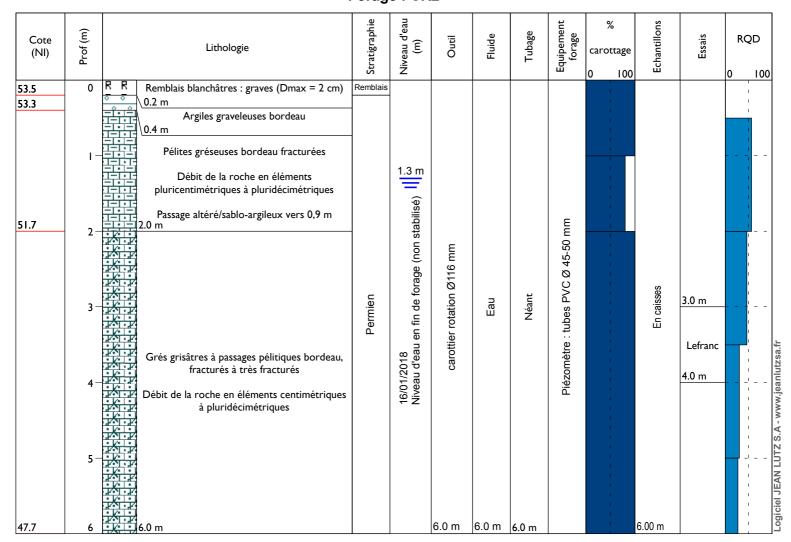

LA FARLEDE

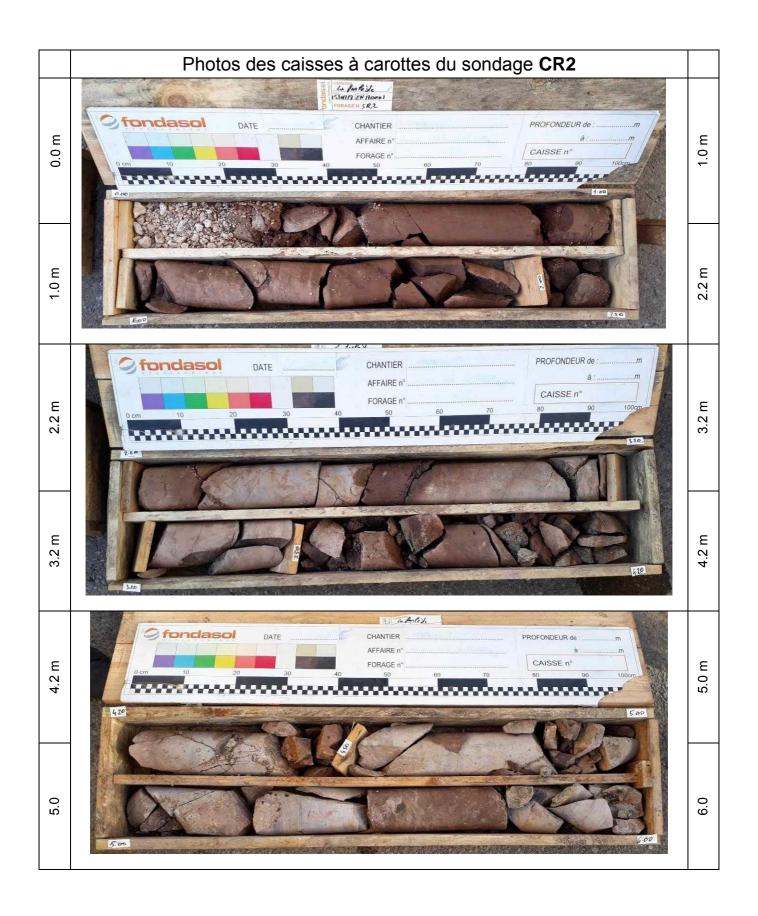
Machine : Soco 50.7

Angle °/verticale : 0°

1/50 Forage : CR1 EXGTE \(\beta \)3.20.3/GTE

Cote (NI)	Prof (m)	Lithologie	Stratigraphie	Niveau d'eau (m)	Outil	Fluide	Tubage	Equipement forage	% carottage 0 100	Echantillons	Essais	RQD 0 100
57.4 57.1 56.9	0	Remblais : graves blanches et argiles grises (Dmax = 3 cm) Présence d'un géotextile à la base R R R 0.2 m	Remblais		rcussion mm				1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
56.3	1-	Remblais bruns : sables limoneux à quelques graves (Dmax = 3 cm) Présence de racines/débris végétaux 0.5 m Remblais gris-beige : argiles graveleuses (dmax		1.3 m	icarottier percussion 3 Ø 114 mm		120-140 mm		1			
55.6	2-	= 2 cm) 0.7 m Sables argilo-graveleux à graves sablo argileux bordeau (frange altérée du substratum) 1.3 m		09/01/2018 Niveau d'eau en fin de forage (non stabilisé)			Ø 120-	45-50 mm	1			
54.4	3-	Pélites gréseuses bordeau très fracturés Débit de la roche en éléments centimétriques à pluricentimétriques 2.0 m	C	in de forage (mm	Eau	3.0 m	PVC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	En caisses	3.0 m	
		Pélites gréseuses fracturés Débit de la roche en éléments pluricentimétriques Plan de fracturation argileux	Permien	1/2018 au d'eau en fi	carottier rotation Ø116 mm			Piézomètre : tubes	1	E	Lefranc	11000
	5-	Pélites gréseuses peu fracturés Débit de la roche en éléments décimétiques à pluridécimétriques		09/0. Nive:	carottier			Ф.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			odicial IEAN LIITS & A waw isophists of
51.6	6	Plan de fracturation avec placage argileux verdâtre à brun verdâtre à brun			6.0 m	6.0 m		6.0 m		6.0 m		


Construction de bâtiments de bureaux, d'un complexe affaire n° AF.EN.18.0001 sportif et d'une résidence service


LA FARLEDE

Machine : KESSAS

Angle °/verticale : 0°

1/50 Forage : CR2 EXGTE \(\beta \).20.3/GTE

SCCV La FARLEDE FORCE 5

Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Pluie + Vent Profondeur : 0.00 - 2.00 m

Heure début : 12:15 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 12:35 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM1 EXGTE B3.20.3/GTE

ndeur (n				Indice	Mesure PID	
Profondeur (m)		Lithologie	Niveau d'eau	organoleptique	(ppm)	Echantillonnage
0	<u>***</u> 0.10 m	Graviers beiges				
0.25	0.30 m	Remblais Limono-Graveleux marron			0	Х
0.5 -						
0.5	00.00	Argile Limono-Graveleuse rouge Grès			0	X
0.75		Gres				
1-	1.00 m					
1.25 -						
1.25		Argile Limono-Graveleuse rouge Grès + Matière Organique			0	X
1.5						
1.75	1.70 m					
	2.00 m	Milieu saturé en eau				
2-						
2.25						
2.5 -	_					
2.75 -						
2.73						
3-						
3.25 -						
3.5 -						
3.3						
3.75						
4-						rtzsa.fr
4.25 -						Logiciel JEAN LUTZ S.A - www.jeanlufzsa.fr
						- www
4.5						TZ S.A
4.75 -						AN LU
5 –						iel JE/
						Logic

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Faible Pluie + VenProfondeur : 0.00 - 2.00 m

Heure début : 12:35 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 13:00 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM2 EXGTE ß3.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Graviers beiges 0.15 m				
0.25	Remblais Limono-Graveleux marron 0.30 m			0	Х
0.5 -	0 0			0	Х
0.75 - I -	Argile Graveleuse marron orangée Blocs de Grès			0	x
1.25 -	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○				
1.5-					
1.75	Refus sur blocs de grès (terrain naturel)				
2-	2.00 m				
2.25 -					
2.5 -					
2.75					
3 -					
3.25					
3.5					
3.75					.=-
4-					inlutzsa.f
4.25					. www.jea
4.5 -					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
4.75					JEAN LI
5 -					Logicie

SCCV La FARLEDE FORCE 5

Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Pluie + Vent Profondeur : 0.00 - 2.00 m

Heure début : 11:35 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 11:55 Flaconnage : Bocaux verre - 3750pperateur : STTLG

Forage: PM3 EXGTE 83.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Graviers beiges 0.20 m			0	Х
0.25	Remblais Limono-Graveleux marron			0	
0.5 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
0.75	0 0 0 0 0 0 0 0				
I-	Argile Limono-Graveleuse marron rouge Grès			0	Х
1.25 -					
1.5 -	1.60 m				
1.75 -	Remblais Limono-Graveleux gris à noirâtre DIB + Grès			0	x
2-	2.00 m	=			
2.25 -					
2.5 -					
2.75 -					
3 -					
3.25 -					
3.5 -					
3.75 -					
4-					lutzsa.fr
4.25 -					vww.jean
4.5 -					
4.75 -					EANLÜ
5 –					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Forte Pluie + VentProfondeur : 0.00 - 2.00 m

Heure début : 10:00 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 10:35 Flaconnage : Bocaux verre - 3750pperateur : STTLG

Forage: PM4 EXGTE ß3.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Sables et Graviers beiges			0	
1	Remblais Limono-Graveleux marron			0	X
0.25 —	0.20 m				
0.5					
				0	×
0.75	Pellite limoneuse grèseuse rouge				
I -					
. 25	1.20 m				
1.25					
1.5					
1.3	Pellite limoneuse grèseuse rouge			0	×
1.75					
1.73					
2-	2.00 m				
_					
2.25 —					
2.5 —					
2.75					
3 -					
3.25 -					
3.5 —					
3.75 -					
					Ŀ
4-					zsa.(
					nalut
4.25 -					w.jea
					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
4.5					S.A
					217
4.75 -					
					JEA
5 –					Jicie
					Log

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Forte Pluie + VentProfondeur : 0.00 - 2.00 m

Heure début : 09:20 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Affaire n° AF.3ELY.18.0005

Heure fin : 10:00 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM5 EXGTE 83.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Sables et Graviers beiges				
0.25	Ros Ros 0.10 m Remblais Limono-Graveleux marron			0	Х
0.25	0.20 m				
	R을 목을 R을 R을 R을 R을 RESE Remblais Limono-Graveleux marron			0	x
1-	R을 점을 R을 R를 R를 R를 R를 R를 1.20 m				
1.25	Limon argileux			0	X
1.75 -				0	X
2-	2.00 m				
2.25 -					
2.5 -					
2.75					
3-					
3.25 -					
3.5 -					
3.75					±=
4-					aani uizsa.
4.25					9[.www.je
4.5					LUTZ S.A
4.75 -					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
					Logic

SCCV La FARLEDE FORCE 5

Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Pluie + Vent Profondeur : 0.00 - 2.00 m

Heure début : 11:10 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 11:35 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM6 EXGTE 83.20.3/GTE

deur)			Indice	Mesure PID	
Profondeur (m)	Lithologie	Niveau d'eau	organoleptique	(ppm)	Echantillonnage
0	Terre Vegétale			0	
0.25 -	Terre Vegétale Ro Ro 0.10 m Ro Ro Ro Ro 0.40 m			0	х
0.5					
0.75 -	Argile limoneuse marron rouge			0	x
-	1.00 m				
1.25 -					
1.5-	Refus sur blocs de grès (terrain naturel)				
1.75 -					
2-	2.00 m	=			
2.25 —					
2.5 —					
2.75					
3 –					
3.25 -					
3.5 -					
3.75 -					
4-					iutzsa.fr
4.25 -					www.jean
4.5 -					Z S.A - v
4.75					EANLU
5 –					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Pluie + Vent Profondeur : 0.00 - 2.00 m

Heure début : 11:50 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Affaire n° AF.3ELY.18.0005

Heure fin : 12:15 Flaconnage : Bocaux verre - 3750pperateur : STTLG

Forage: PM7 EXGTE 83.20.3/GTE

		i orage . i w			
Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Gravier beige			0	
0.25 -	0.15 m Remblais Limono-Graveleux marro 0.30 m	on		0	Х
0.5 - 0.75 - 1 -	Argile Limono-Graveleuse rouge Blocs de grès			0	X
1.75 -	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○			0	X
2-					
2.25 -					
2.5 -					
2.75 -					
3 -					
3.25 -					
3.5 -					
3.75 -					
4-					ulzsa.fr
4.25 -					ww.jeanII
4.5 -					.S.A - wv
4.75 -					AN LUTZ
5 –					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
					ار ا

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Faible Pluie + VenProfondeur : 0.00 - 2.00 m

Heure début : 13:25 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 13:45 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM8 EXGTE ß3.20.3/GTE

Niveau d'eau Indice organolepique Mesure PID Echantillonnage	
O	
0.25 Rembiais Argilo-Graveleux marron Verre 0.5 Rembiais Argilo-Graveleux marron Verre 0.75 Rembiais Argilo-Graveleux marron Verre 0.80 m Refus sur blocs de Grès rouge (Terrain naturel) 1.5 Refus sur blocs de grès (terrain naturel) 2.00 m 2.25 - 2.5 - 3.5 - 3.5 - 3.75 -	
Remblais Argilo-Graveleux marron Verre	
0.75 0.30 m 0	
1.25 — Refus sur blocs de grès (terrain naturel) 1.5 — 2 — 2.00 m 2.25 — 2.5 — 2.75 — 3 — 3.25 — 3.5 — 3.75 — 3.75 — 3.75 —	
1.25 — Refus sur blocs de grès (terrain naturel) 1.75 — 2.00 m 2.25 — 2.5 — 2.75 — 3 — 3.25 — 3.5 — 3.75 —	
Refus sur blocs de grès (terrain naturel) 1.75 -	
1.75 — 2.00 m 2.25 — 2.5 — 2.75 — 3 — 3.25 — 3.5 — 3.75 —	
2 2.00 m 2.25 - 2.5 - 2.75 - 3 - 3.25 - 3.5 - 3.75 -	
2.25 - 2.5 - 2.75 - 3 - 3.25 - 3.5 - 3.75 -	
2.5 – 2.75 – 3 – 3.25 – 3.5 – 3.75 –	
2.75 – 3 – 3.25 – 3.5 – 3.75 –	
3.25 — 3.5 — 3.75 —	
3.25 — 3.5 — 3.75 —	
3.5 –	
3.75	
4-	
	nlutzsa.fr
4.25 —	www.jear
4.5 —	TZ S.A - 1
4.75 –	IF AN LU
5-	Logiciel JEAN LUTZ S.A - www.ieanlutzsa.fr

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/20018J. météo : Faible Pluie + VenProfondeur : 0.00 - 2.00 m

Heure début : 13:45 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 14:05 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM9 EXGTE 83.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Gravier gris				
0.25 -	Gravier beige oranger				
0.5 -				0	x
0.75	Limons légèrement graveleux marron rouge				
1-	0.90 m Graves limoneuses marron rouge (Blocs de plus en plus gros)			0	X
1.25	1.10 m				
1.5-	Refus sur blocs de grès (terrain naturel)				
1.75					
2-	2.00 m				
2.25 -					
2.5					
2.75					
3 -					
3.25 -					
3.5 -					
3.75 -					
4-					nutzsa.fr
4.25 -					ww.jean
4.5 -					7. 8.8 - v
4.75					EAN LUI
5 -					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

SCCV La FARLEDE FORCE 5

Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018 météo : Vent Profondeur : 0.00 - 2.00 m

Heure début : 14:05 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Affaire n° AF.3ELY.18.0005

Heure fin : 14:30 Flaconnage : Bocaux verre - 3750pperateur : STTLG

Forage: PM10 EXGTE 83.20.3/GTE

		<u> </u>			
Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Gravier gris			0	X
0.25	Gravier beige oranger				
0.5	Argile Limono-Graveleuse marron rouge Gros Blocs			0	x
0.75	0.90 m				
1-	Graves limoneuses marron rouge (Blocs de plus en plus gros)				
1.25	1.10 m				
1.5	Refus sur blocs de grès (terrain naturel)				
1.75					
2-	2.00 m				
2.25					
2.5					
2.75					
3 —					
3.25					
3.5					
3.75					
4-					lutzsa.fr
4.25 —					www.jean
4.5					Z S.A - v
4.75					EAN LUI
5-					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr

SCCV La FARLEDE FORCE 5

Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Vent Profondeur : 0.00 - 2.00 m

Heure début : 14:30 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Affaire n° AF.3ELY.18.0005

Heure fin : 14:45 Flaconnage : Bocaux verre - 3750pperateur : STTLG

Forage: PM11 EXGTE 83.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Gravier gris			8	0.10 m
0.25	Gravier beige oranger 0.10 m				
0.5	Argile Graveleuse marron rouge + Argile verte			0	X
0.75	0.80 m				0.80 m
1-					
1.25	Refus sur blocs de grès (terrain naturel)				
1.5	Titolae ear alless as gree (tarrain natare),				
1.75	2.00 m				
2-	2.55				
2.25 -					
2.75					
3-					
3.25					
3.5 -					
3.75					la:
4-					lan lines
4.25					ii www.
4.75					78 21017
5-					noriciel JEAN LUTZ S.A www.ieanlutzsa.fr

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Faible Pluie + VenProfondeur : 0.00 - 2.00 m

Heure début : 13:00 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Affaire n° AF.3ELY.18.0005

Heure fin : 13:25 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM12 EXGTE 83.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Remblais sableux marron 0.15 m			0	Х
0.25	Remblais Limono-Graveleux oranger			0	Х
0.5 -	0 0			0	x
0.75	○ ○ 0.70 m				
1-					
1.25 -	Refus sur blocs de grès (terrain naturel)				
1.5					
1.75 -					
2-	2.00 m				
2.25 -					
2.5 –					
2.75 -					
3 -					
3.25 -					
3.5 -					
3.75 -					
4-					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
4.25 -					www.jea
4.5 -					172 S.A
4.75					JEAN LL
5 -					Logiciel

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Forte Pluie + VentProfondeur : 0.00 - 2.10 m

Heure début : 10:35 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 11:10 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM13 EXGTE ß3.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Sables et Graviers beiges			0	
0.25	문교문교 문교문교 0.40 m			0	Х
0.5 0.75 1 1.25	ਸ਼ੁਰੂਕਰ ਸ਼ੁਰੂਕਰ			0	X
1.75 —	Remblais Limono-Graveleux marron foncé 로 국 Remblais Limono-Graveleux marron foncé Ferraille 문 국 Remblais Limono-Graveleux marron foncé			0	x
2-	Rore 2.00 m Poche de matière organique \(2.10 m \)				X
2.25 —	(2.70)				
2.5					
2.75 —					
3-					
3.25 —					
3.5					
3.75 —					
4-					Izsa.fr
4.25 —					w.jeanlu
4.5					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
4.75					I IN LUTZ
5 —					iciel JEA
					Log

SCCV La FARLEDE FORCE 5 Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/2018d. météo : Vent Profondeur : 0.00 - 2.00 m

Heure début : 14:45 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 15:15 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM14 EXGTE ß3.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Gravier beige 0.20 m				
0.25	Remblais Limono-Sableux-Graveleux rouge marron 0.40 m			0	Х
0.5	0 0 0				
0.75				0	Х
-	0 0 0 0 0 0				
	Limon Argilo-Graveleux rouge Gros blocs de grès + Bois			0	X
1.25	1.30 m				
1.5					
1.75	Refus sur blocs de grès (terrain naturel)				
2-	2.00 m				
2.25 —					
2.5					
2.75					
3-					
3.25 —					
3.5					
3.75					
4-					Logiciel JEAN LUTZ S.A - www.jeanlutzsa.fr
4.25 —					w.jeanl
4.5					.A - ww
					S ZUTZ S
4.75					JEANI
5-					ogiciel
	l l	I	<u> </u>		

SCCV LA FARLEDE FORCE 5

Projet de construction d'un ensemble immobilier à La

FARLEDE (83)

Date : 15/03/20018d. météo : Forte Pluie + VentProfondeur : 0.00 - 2.00 m

Heure début : 08:45 Outils : Pelleteuse Préleveur : Noémie CAHEN-LAFARGE

Heure fin : 09:20 Flaconnage : Bocaux verre - 3750pptrateur : STTLG

Forage: PM15 EXGTE ß3.20.3/GTE

Profondeur (m)	Lithologie	Niveau d'eau	Indice organoleptique	Mesure PID (ppm)	Echantillonnage
0	Sable et Gravier beige 0.15 m			0	X
0.25	<u>00</u> <u>00</u>				
0.5	<u>-o-o</u> Limons argileux			0	x
	Blocs de grès altérés				
0.75	<u>00</u> 0.90 m				
1-	1.10 m Pellite grèseuse rouge bordeaux			0	X
1.25 -					
1.5-	Refus sur blocs de grès (terrain naturel)				
1.75					
2-	2.00 m				
2.25					
2.5					
2.75					
3 –					
3.25 -					
3.5 -					
3.75					
4-					lutzsa.fr
4.25 —					ww.jean
4.5					Logiciel JEAN LUTZ S.A - www.jeanlufzsa.fr
4.75					EAN LU
5 –					Logiciel

Annexe 3 - Bordereaux d'analyses du laboratoire

FONDASOL Madame Noémie CAHEN-LAFARGE 58 Avenue des Bruyères 69150 DECINES CHARPIEU

RAPPORT D'ANALYSE

Version du : 28/02/2018

Date de réception : 21/02/2018

Dossier N°: 18E016306

N° de rapport d'analyse : AR-18-LK-024278-01 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005 Nom Commande: 3ELY180005 Référence Commande : 3ELY180005

Coordinateur de projet client : Caroline Gavalet-Eber / CarolineGavalet-Eber@eurofins.com / +33 3 88 02 90 13

N° Ech	Matrice		Référence échantillon
001	Sol	(SOL)	CR1(0-0.7
002	Sol	(SOL)	CR1(2-3)
003	Sol	(SOL)	CR2(0.2-1)

RAPPORT D'ANALYSE

Dossier N°: 18E016306

Version du : 28/02/2018

N° de rapport d'analyse : AR-18-LK-024278-01

Date de réception : 21/02/2018

Référence Dossier : N° Projet : 3ELY180005 Nom Projet: 3ELY180005

Nom Commande: 3ELY180005 Référence Commande : 3ELY180005

N° Echantillon	001	002	003
Référence client :	CR1(0-0.7	CR1(2-3)	CR2(0.2-1)
Matrice:	SOL	SOL	SOL
Date de prélèvement :			
Date de début d'analyse :	22/02/2018	22/02/2018	22/02/2018

Préparation Physico-Chimique

		•			•		•	
LS896 : Matière sèche	% P.B.	*	92.0	*	97.8	*	95.0	
XXS07 : Refus Pondéral à 2 mm	% P.B.	*	6.05	*	<1.00	*	3.67	
XXS06 : Séchage à 40°C		*	-	*	-	*	-	
LSA6L : Broyage mécanique (<			Fait		Fait		Fait	

Indices de pollution

LS08X : Carbone Organique Total (COT)	mg/kg MS	*	7750	*	<1000	*	<1000

Hydrocarbures totaux

LS919 : Hydrocarbures totaux (4 tranches)								
(C10-C40)								
Indice Hydrocarbures (C10-C40)	mg/kg MS	*	18.6	*	<15.0	*	<15.0	
HCT (nC10 - nC16) (Calcul)	mg/kg MS		1.95		<4.00		<4.00	
HCT (>nC16 - nC22) (Calcul)	mg/kg MS		3.44		<4.00		<4.00	
HCT (>nC22 - nC30) (Calcul)	mg/kg MS		7.54		<4.00		<4.00	
HCT (>nC30 - nC40) (Calcul)	mg/kg MS		5.64		<4.00		<4.00	

Hydrocarbures Aromatiques Polycycliques (HAPs)

0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
< < < < < <

RAPPORT D'ANALYSE

Dossier N°: 18E016306

Version du : 28/02/2018

N° de rapport d'analyse : AR-18-LK-024278-01

Date de réception : 21/02/2018

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005 Nom Commande: 3ELY180005 Référence Commande : 3ELY180005

LSA

SOMME PCB (7)

001 003 002 N° Echantillon CR1(0-0.7 CR1(2-3) CR2(0.2-1) Référence client : SOL SOL SOL Matrice: Date de prélèvement :

22/02/2018

< 0.01

Date de début d'analyse : 22/02/2018 22/02/2018 Polychlorobiphényles (PCBs)

LSA42 : PCB congénères rég	lementaires (7)							
PCB 28	mg/kg MS	*	<0.01	*	<0.01	*	<0.01	
PCB 52	mg/kg MS	*	<0.01	*	<0.01	*	<0.01	
PCB 101	mg/kg MS	*	<0.01	*	<0.01	*	<0.01	
PCB 118	mg/kg MS	*	<0.01	*	<0.01	*	<0.01	
PCB 138	mg/kg MS	*	<0.01	*	<0.01	*	<0.01	
PCB 153	mg/kg MS	*	<0.01	*	<0.01	*	<0.01	
PCB 180	mg/kg MS	*	<0.01	*	<0.01	*	<0.01	

< 0.01

Composés Volatils

<0.01

LS0XU : Benzène	mg/kg MS	*	<0.05	*	<0.05	*	<0.05
LS0Y4 : Toluène	mg/kg MS	*	<0.05	*	<0.05	*	<0.05
LS0XW : Ethylbenzène	mg/kg MS	*	<0.05	*	< 0.05	*	<0.05
LS0Y6 : o-Xylène	mg/kg MS	*	<0.05	*	< 0.05	*	<0.05
LS0Y5 : m+p-Xylène	mg/kg MS	*	<0.05	*	< 0.05	*	<0.05
I SOIK - Somme des BTEY	ma/ka MS		<0.0500		< 0.0500		< 0.0500

mg/kg MS

			4 -		
IV		ria	1	-	n
шл	u ny	A Co		u	

LSA36 : Lixiviation 1x24 heures							
Lixiviation 1x24 heures		*	Fait	*	Fait	*	Fait
Refus pondéral à 4 mm	% P.B.	*	7.9	*	100.0	*	100.0
XXS4D : Pesée échantillon lixiviation							
Volume	ml	*	240	*	240	*	240
Masse	g	*	24.00	*	24.1	*	24.2

Analyses immédiates sur éluat

LSQ13 : Mesure du pH sur eluat								
pH (Potentiel d'Hydrogène)		*	8.2	*	8.6	*	8.8	
Température de mesure du pH	°C		18		19		19	
LSQ02 : Conductivité à 25°C sur éluat								
Conductivité corrigée automatiquement à 25°C	μS/cm	*	168	*	73	*	92	
Température de mesure de la conductivité	°C		18.9		19.4		18.7	
LSM46 : Résidu sec à 105°C (Fraction s	soluble) sur							
éluat								
Résidus secs à 105 °C	mg/kg MS	*	5900	*	<2000	*	3600	
Résidus secs à 105°C (calcul)	% MS	*	0.6	*	<0.2	*	0.4	

RAPPORT D'ANALYSE

Dossier N°: 18E016306

Version du : 28/02/2018

N° de rapport d'analyse : AR-18-LK-024278-01 Référence Dossier : N° Projet : 3ELY180005 Date de réception : 21/02/2018

Nom Projet : 3ELY180005 Nom Commande : 3ELY180005

Référence Commande : 3ELY180005

001 003 002 N° Echantillon CR1(0-0.7 CR1(2-3) CR2(0.2-1) Référence client : SOL SOL SOL Matrice: Date de prélèvement : Date de début d'analyse : 22/02/2018 22/02/2018 22/02/2018

		Ind	lices de	po	llution	sur	éluat	
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg MS	*	130	*	<50	*	<50	
LS04Y: Chlorures sur éluat	mg/kg MS	*	48.9	*	15.5	*	13.6	
LSN71 : Fluorures sur éluat	mg/kg MS	*	<5.02	*	<5.00	*	<5.00	
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS	*	<502	*	76.9	*	80.9	
LSM90 : Indice phénol sur éluat	mg/kg MS	*	<0.50	*	< 0.50	*	<0.50	

			Mét	aux	sur éli	uat	
LSM04 : Arsenic (As) sur éluat	mg/kg MS	*	<0.20	*	<0.20	*	0.24
LSM05 : Baryum (Ba) sur éluat	mg/kg MS	*	0.78	*	0.66	*	0.28
LSM11 : Chrome (Cr) sur éluat	mg/kg MS	*	<0.10	*	<0.10	*	<0.10
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS	*	<0.20	*	<0.20	*	<0.20
LSN26 : Molybdène (Mo) sur éluat	mg/kg MS	*	0.099	*	<0.01	*	<0.01
LSM20 : Nickel (Ni) sur éluat	mg/kg MS	*	<0.10	*	<0.10	*	<0.10
LSM22 : Plomb (Pb) sur éluat	mg/kg MS	*	0.16	*	<0.10	*	<0.10
LSM35 : Zinc (Zn) sur éluat	mg/kg MS	*	<0.20	*	<0.20	*	<0.20
LS04W : Mercure (Hg) sur éluat	mg/kg MS	*	<0.001	*	<0.001	*	<0.001
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS	*	0.006	*	<0.005	*	<0.005
LSN05 : Cadmium (Cd) sur éluat	mg/kg MS	*	<0.002	*	<0.002	*	<0.002
LSN41 : Sélénium (Se) sur éluat	mg/kg MS	*	<0.01	*	<0.01	*	<0.01

D·	détecté /	ND ·	non	détecté

Observations	N° Ech	Réf client
Fraction soluble : Le trouble résiduel observé après filtration du lixiviat peut entraîner une sur-estimation du résultat.	(001) (003)	CR1(0-0.7 / CR2(0.2-1) /
Les résultats ne tiennent pas compte du risque de déperdition ou d'absorption des composants à analyser du fait de l'utilisation d'un flaconnage inapproprié lors du prélèvement.	(001) (002) (003)	CR1(0-0.7 / CR1(2-3) / CR2(0.2-1) /
Lixiviation : Conformément aux exigences de la norme NF EN 12457-2, votre échantillonnage n'a pas permis de fournir les 2kg requis au laboratoire.	(001) (003)	CR1(0-0.7 / CR2(0.2-1) /

RAPPORT D'ANALYSE

Version du : 28/02/2018

Dossier N°: 18E016306

N° de rapport d'analyse : AR-18-LK-024278-01 Date de réception : 21/02/2018

Référence Dossier : N° Projet : 3ELY180005 Nom Projet : 3ELY180005 Nom Commande : 3ELY180005 Référence Commande : 3ELY180005

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 8 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des prélèvements et des analyses terrains et/ou des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Anne-Charlotte Soulé De Lafont Coordinateur Projets Clients

Annexe technique

N° de rapport d'analyse :AR-18-LK-024278-01 Dossier N°: 18E016306

Emetteur: Commande EOL: 006-10514-317949

Nom projet: 3ELY180005 Référence commande : 3ELY180005

Sol

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS04W	Mercure (Hg) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.001	mg/kg MS	Eurofins Analyse pour l'Environnement France
LS04Y	Chlorures sur éluat	Spectrophotométrie (UV/VIS) [Spectrométrie visible automatisée] - NF EN 16192 - NF ISO 15923-1	10	mg/kg MS	1
LS04Z	Sulfate (SO4) sur éluat	- 1	50	mg/kg MS	1
LS08X	Carbone Organique Total (COT)	Combustion [sèche] - NF ISO 10694	1000	mg/kg MS	1
LS0IK	Somme des BTEX	Calcul - Calcul		mg/kg MS	1
LS0XU	Benzène	HS - GC/MS [Extraction méthanolique] - NF EN ISO 22155 (sol) ou Méthode interne (boue,séd	0.05	mg/kg MS]
LS0XW	Ethylbenzène	-	0.05	mg/kg MS	1
LS0Y4	Toluène	-	0.05	mg/kg MS	1
LS0Y5	m+p-Xylène	-	0.05	mg/kg MS	1
LS0Y6	o-Xylène	-	0.05	mg/kg MS	1
LS896	Matière sèche	Gravimétrie - NF ISO 11465	0.1	% P.B.	1
LS919	Hydrocarbures totaux (4 tranches) (C10-C40)	GC/FID [Extraction Hexane / Acétone] - NF EN ISO 16703 (Sols) - NF EN 14039 (Boue, Sédiments)			
	Indice Hydrocarbures (C10-C40)	10703 (3013) - 141 E14 14033 (Bode, 3ediments)	15	mg/kg MS	
	HCT (nC10 - nC16) (Calcul)			mg/kg MS	
	HCT (>nC16 - nC22) (Calcul)			mg/kg MS	
	HCT (>nC22 - nC30) (Calcul)			mg/kg MS	
	HCT (>nC30 - nC40) (Calcul)			mg/kg MS	
LSA33	Hydrocarbures Aromatiques Polycycliques (16 HAPs)	GC/MS/MS [Extraction Hexane / Acétone] - NF ISO 18287 (Sols) - XP X 33-012 (boue, sédiment)			
	Naphtalène	10207 (COID) 747 74 CO CTZ (BODG, SCHIMON)	0.05	mg/kg MS	
	Acénaphthylène		0.05	mg/kg MS	
	Acénaphtène		0.05	mg/kg MS	
	Fluorène		0.05	mg/kg MS	
	Phénanthrène		0.05	mg/kg MS	
	Anthracène		0.05	mg/kg MS	
	Fluoranthène		0.05	mg/kg MS	
	Pyrène		0.05	mg/kg MS	
	Benzo-(a)-anthracène		0.05	mg/kg MS	
	Chrysène		0.05	mg/kg MS	
	Benzo(b)fluoranthène		0.05	mg/kg MS	
	Benzo(k)fluoranthène		0.05	mg/kg MS	
	Benzo(a)pyrène		0.05	mg/kg MS	
	Dibenzo(a,h)anthracène		0.05	mg/kg MS	
	Benzo(ghi)Pérylène		0.05	mg/kg MS	
	Indeno (1,2,3-cd) Pyrène		0.05	mg/kg MS	
	Somme des HAP			mg/kg MS	
LSA36	Lixiviation 1x24 heures	Lixiviation [Ratio L/S = 10 l/kg - Broyage par			1
	Lixiviation 1x24 heures	concasseur à mâchoires] - NF EN 12457-2			
	Refus pondéral à 4 mm		0.1	% P.B.	
LSA42	PCB congénères réglementaires (7)	GC/MS/MS [Extraction Hexane / Acétone] - NF EN 16167 (Sols) - XP X 33-012 (boue, sédiment)			1
	PCB 28	7. (5.5) 7. 7. 55 512 (5646, 564m1611)	0.01	mg/kg MS	
	PCB 52		0.01	mg/kg MS	

Annexe technique

N° de rapport d'analyse :AR-18-LK-024278-01 Dossier N°: 18E016306

Emetteur: Commande EOL: 006-10514-317949

Nom projet: 3ELY180005 Référence commande : 3ELY180005

Sol

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site
	PCB 101		0.01	mg/kg MS	de :
	PCB 118		0.01	mg/kg MS	
	PCB 138		0.01	mg/kg MS	
	PCB 153		0.01	mg/kg MS	
	PCB 180		0.01	mg/kg MS	
	SOMME PCB (7)			mg/kg MS	
LSA6L	Broyage mécanique (< 5cm)	Broyage - Méthode interne			1
LSM04	Arsenic (As) sur éluat	ICP/AES - NF EN ISO 11885 / NF EN 16192	0.2	mg/kg MS	†
LSM05	Baryum (Ba) sur éluat		0.1	mg/kg MS	1
LSM11	Chrome (Cr) sur éluat		0.1	mg/kg MS	1
LSM13	Cuivre (Cu) sur éluat		0.2	mg/kg MS	1
LSM20	Nickel (Ni) sur éluat		0.1	mg/kg MS	1
LSM22	Plomb (Pb) sur éluat		0.1	mg/kg MS	1
LSM35	Zinc (Zn) sur éluat		0.2	mg/kg MS	1
LSM46	Résidu sec à 105°C (Fraction soluble) sur éluat Résidus secs à 105°C	Gravimétrie - NF T 90-029 / NF EN 16192	2000	ma/ka MS	
			0.2	mg/kg MS % MS	
	Résidus secs à 105°C (calcul)				
LSM68	Carbone Organique par oxydation (COT) sur éluat	Spectrophotométrie (IR) [Oxydation à chaud en milieu acide] - NF EN 16192 - NF EN 1484 - Adaptée de NF EN 1484 (hors Sol)	50	mg/kg MS	
LSM90	Indice phénol sur éluat	Flux continu - NF EN ISO 14402 (adaptée sur sédiment,boue) - NF EN 16192	0.5	mg/kg MS	
LSM97	Antimoine (Sb) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.005	mg/kg MS	
LSN05	Cadmium (Cd) sur éluat		0.002	mg/kg MS	
LSN26	Molybdène (Mo) sur éluat		0.01	mg/kg MS	
LSN41	Sélénium (Se) sur éluat		0.01	mg/kg MS	
LSN71	Fluorures sur éluat	Electrométrie [Potentiometrie] - NF T 90-004 (adaptée sur sédiment,boue) - NF EN 16192	5	mg/kg MS	
LSQ02	Conductivité à 25°C sur éluat	Potentiométrie [Méthode à la sonde] - NF EN 27888 / NF EN 16192			
	Conductivité corrigée automatiquement à 25°C	2/000/NI LIN 10192		μS/cm	
	Température de mesure de la conductivité			°C	
LSQ13	Mesure du pH sur éluat	Potentiométrie - NF EN ISO 10523 / NF EN 16192			
	pH (Potentiel d'Hydrogène)				
	Température de mesure du pH			°C]
XXS06	Séchage à 40°C	Séchage - NF ISO 11464]
XXS07	Refus Pondéral à 2 mm	Gravimétrie - NF ISO 11464	1	% P.B.]
XXS4D	Pesée échantillon lixiviation	Gravimétrie -			
	Volume			ml	
	Masse			g	

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 18E016306 N° de rapport d'analyse : AR-18-LK-024278-01

Emetteur : Commande EOL : 006-10514-317949

Nom projet : N° Projet : 3ELY180005 Référence commande : 3ELY180005

3ELY180005

Nom Commande: 3ELY180005

Sol

Référence Eurofins	Référence Client	Date&Heure Prélèvement	Code-barre	Nom flacon
18E016306-001	CR1(0-0.7		V05AA4223	374mL verre (sol)
18E016306-002	CR1(2-3)		V05AA4212	374mL verre (sol)
18E016306-003	CR2(0.2-1)		V05AA4399	374mL verre (sol)

FONDASOL Madame Noémie CAHEN-LAFARGE 58 Avenue des Bruyères 69150 DECINES CHARPIEU

RAPPORT D'ANALYSE

Version du : 26/03/2018

Date de réception : 19/03/2018

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

Coordinateur de projet client : Caroline Gavalet-Eber / CarolineGavalet-Eber@eurofins.com / +33 3 88 02 90 13

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018 Date de réception : 19/03/2018

N° Ech	Matrice		Référence échantillon
001	Sol	(SOL)	PM1 (0.1-0.3)
002	Sol	(SOL)	PM1 (0.3-1)
003	Sol	(SOL)	PM1 (1-1.7)
004	Sol	(SOL)	PM2 (0.15-0.3)
005	Sol	(SOL)	PM2 (0.3-0.6)
006	Sol	(SOL)	PM2 (0.6-1.3)
007	Sol	(SOL)	PM3 (0-0.2)
800	Sol	(SOL)	PM3 (0.3-1.6)
009	Sol	(SOL)	PM3 (1.6-2)
010	Sol	(SOL)	PM4 (0.1-0.2)
011	Sol	(SOL)	PM4 (0.2-1.2)
012	Sol	(SOL)	PM4 (1.2-2)
013	Sol	(SOL)	PM5 (0.1-0.2)
014	Sol	(SOL)	PM5 (0.2-1.2)
015	Sol	(SOL)	PM5 (1.2-1.6)
016	Sol	(SOL)	PM5 (1.6-2)
017	Sol	(SOL)	PM6 (0.1-0.4)
018	Sol	(SOL)	PM6 (0.4-1)
019	Sol	(SOL)	PM7 (0.15-0.3)
020	Sol	(SOL)	PM7 (0.3-1.3)
021	Sol	(SOL)	PM7 (1.3-2)
022	Sol	(SOL)	PM8 (0.15-0.3)
023	Sol	(SOL)	PM8 (0.3-0.8)
024	Sol	(SOL)	PM9 (0.1-0.9)
025	Sol	(SOL)	PM9 (0.9-1.1)
026	Sol	(SOL)	PM10 (0.05-0.1)
027	Sol	(SOL)	PM10 (0.1-0.9)
028	Sol	(SOL)	PM11 (0.1-0.8)
029	Sol	(SOL)	PM12 (0-0.15)
030	Sol	(SOL)	PM12 (0.15-0.3)
031	Sol	(SOL)	PM12 (0.3-0.7)
032	Sol	(SOL)	PM13 (0.2-0.4)
033	Sol	(SOL)	PM13 (0.4-1.4)
034	Sol	(SOL)	PM13 (1.4-2)
035	Sol	(SOL)	PM13 (2-2.1)
036	Sol	(SOL)	PM14 (0.2-0.4)
037	Sol	(SOL)	PM14 (0.4-1.1)
038	Sol	(SOL)	PM14 (1.1-1.3)
039	Sol	(SOL)	PM15 (0-0.15)
040	Sol	(SOL)	PM15 (0.15-0.9)

RAPPORT D'ANALYSE

Dossier N°: 18E026531

Version du : 26/03/2018

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Date de réception : 19/03/2018

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

Sol (SOL) 041 PM15 (0.9-1.1)

RAPPORT D'ANALYSE

Version du : 26/03/2018

Date de réception : 19/03/2018

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

N° Echantillon Référence client : PM1 (0.1-0.3) PM1 (0.3-1) PM1 (0.3-1) PM2 (0.15-0.3) SOL S	005 PM2 (0.3-0.6)	006
Matrice : SOL SOL 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 19/03	1 1112 (0.0 0.0)	- PIVIZ (U.6-7.3
Matrice : SOL SOL SOL SOL SOL 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 19/03/2018		1 1012 (0:0-1:0
Date de début d'analyse : 19/03/2018 19/03/2018 20/03/2018 19/03/2018 Administratif LSOIR : Mise en réserve de l'échantillon (en option) Préparation Physico-Chimique LS896 : Matière sèche % P.B. XXS07 : Refus Pondéral à 2 mm % P.B. XXS06 : Séchage à 40°C Indices de pollution LS08X : Carbone Organique Total (COT) Matière sèche % P.B. * 83.9 * 15.6 * -	SOL	SOL
Administratif LSOIR : Mise en réserve de l'échantillon (en option) Préparation Physico-Chimique LS896 : Matière sèche % P.B. * 83.9 XXS07 : Refus Pondéral à 2 mm % P.B. * 15.6 XXS06 : Séchage à 40°C * - Indices de pollution LS08X : Carbone Organique Total (COT) Matière sèche % P.B. * 5770	15/03/2018	15/03/2018
LS0IR : Mise en réserve de l'échantillon (en option) Préparation Physico-Chimique LS896 : Matière sèche % P.B. XXS07 : Refus Pondéral à 2 mm % P.B. XXS06 : Séchage à 40°C Indices de pollution LS08X : Carbone Organique Total (COT) Mise en réserve de l'échantillon Physico-Chimique * 83.9 * 15.6 * -	19/03/2018	20/03/2018
Préparation Physico-Chimique LS896 : Matière sèche		
LS896 : Matière sèche		
XXS07 : Refus Pondéral à 2 mm % P.B. * 15.6 XXS06 : Séchage à 40°C * - Indices de pollution LS08X : Carbone Organique Total (COT) * 5770		
* - Indices de pollution LS08X : Carbone Organique Total (COT) * 5770		* 86.2
LS08X : Carbone Organique Total mg/kg MS * 5770 (COT)		* 11.6
LS08X : Carbone Organique Total mg/kg MS * 5770 (COT)		* -
(СОТ)		
Métaux		* 3920
XXS01 : Minéralisation eau régale - * -		* -
Bloc chauffant LS863 : Antimoine (Sb) mg/kg MS * <1.00		* <1.00
LS865 : Arsenic (As) mg/kg MS * 9.03		* 7.63
LS866 : Baryum (Ba) mg/kg MS * 237		* 89.4
LS870 : Cadmium (Cd) mg/kg MS * <0.40		* <0.40
LS872 : Chrome (Cr) mg/kg MS * 10.5		* 7.57
LS874 : Cuivre (Cu) mg/kg MS * 17.8		* 17.6
LS880 : Molybdène (Mo) mg/kg MS * <1.00		* <1.00
LS881 : Nickel (Ni)		* 5.08
LS883 : Plomb (Pb) mg/kg MS * 58.3		* 36.8
LS885 : Sélénium (Se) mg/kg MS <1.00		<1.00
LS894 : Zinc (Zn) mg/kg MS * 25.6		* 20.5
LSA09 : Mercure (Hg) mg/kg MS * <0.10		* <0.10
Hydrocarbures totaux		
LS919 : Hydrocarbures totaux (4 tranches)		
(C10-C40) Indice Hydrocarbures (C10-C40) mg/kg MS * <15.0		* 15.0
HCT (nC10 - nC16) (Calcul) mg/kg MS <4.00		6.51
HCT (>nC16 - nC22) (Calcul) mg/kg MS <4.00		0.39
HCT (>nC22 - nC30) (Calcul) mg/kg MS <4.00		1.58
HCT (>nC30 - nC40) (Calcul) mg/kg MS <4.00		
		6.53

006

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

003

004

005

RAPPORT D'ANALYSE

001

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

N° Echantillon

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018 Date de réception : 19/03/2018

002

N Edianulon		001	002	000	007	005	000	
Référence client :		PM1 (0.1-0.3)	PM1 (0.3-1)	PM1 (1-1.7)	PM2 (0.15-0.3)	PM2 (0.3-0.6)	PM2 (0.6-1.3)	
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL	
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	
		19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018	
Date de début d'analyse :						19/03/2018	20/03/2018	
Hydrocarbures Aromatiques Polycycliques (HAPs)								
LSA33: Hydrocarbures Aromatiques Po	olycycliques							
(16 HAPs)				* .0.05			* .0.05	
Naphtalène	mg/kg MS			* <0.05			* <0.05	
Acénaphthylène	mg/kg MS			* <0.05			* <0.05	
Acénaphtène	mg/kg MS			* <0.05			* <0.05	
Fluorène	mg/kg MS			* <0.05			* <0.05	
Phénanthrène	mg/kg MS			* 0.071			* <0.05	
Anthracène	mg/kg MS			* <0.05			* <0.05	
Fluoranthène	mg/kg MS			* <0.05			* <0.05	
Pyrène	mg/kg MS			* <0.05			* <0.05	
Benzo-(a)-anthracène	mg/kg MS			* <0.05			* <0.05	
Chrysène	mg/kg MS			* <0.05			* <0.05	
Benzo(b)fluoranthène	mg/kg MS			* <0.05			* <0.05	
Benzo(k)fluoranthène	mg/kg MS			* <0.05			* <0.05	
Benzo(a)pyrène	mg/kg MS			* <0.05			* <0.05	
Dibenzo(a,h)anthracène	mg/kg MS			* <0.05			* <0.05	
Benzo(ghi)Pérylène	mg/kg MS			* <0.05			* <0.05	
Indeno (1,2,3-cd) Pyrène	mg/kg MS			* <0.05			* <0.05	
Somme des HAP	mg/kg MS			0.071			<0.05	
	F	Polychlorol	biphényles	(PCBs)				
LSA42 : PCB congénères réglementaire	s (7)							
PCB 28	mg/kg MS			* <0.01			* <0.01	
PCB 52	mg/kg MS			* <0.01			* <0.01	
PCB 101	mg/kg MS			* <0.01			* <0.01	
PCB 118	mg/kg MS			* <0.01			* <0.01	
PCB 138	mg/kg MS			* <0.01			* <0.01	
PCB 153	mg/kg MS			* <0.01			* <0.01	
PCB 180	mg/kg MS			* <0.01			* <0.01	
SOMME PCB (7)	mg/kg MS			<0.01			<0.01	
Composés Volatils								
LS00D : Hydrocarbures volatils totaux (MeC5 - C10)							
MeC5 - C8 inclus	mg/kg MS			<1.00			<1.00	
> C8 - C10 inclus	mg/kg MS			<1.00			<1.00	
Somme MeC5 - C10	mg/kg MS			<1.00			<1.00	
LS0Y1 : Dichlorométhane	mg/kg MS			* <0.06			* <0.05	
LS0XT : Chlorure de vinyle	mg/kg MS			* <0.02			* <0.02	
	5 5							

RAPPORT D'ANALYSE

Version du : 26/03/2018

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Date de réception : 19/03/2018

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

Reference Communice : 74 .5EET.	10.0000								
N° Echantillon		001	002	003	004	005	006		
Référence client :		PM1 (0.1-0.3)	PM1 (0.3-1)	PM1 (1-1.7)	PM2	PM2 (0.3-0.6)	PM2 (0.6-1.3)		
					(0.15-0.3)				
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL		
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018		
Date de début d'analyse :		19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018		
Composés Volatils									
LS0YP : 1,1-Dichloroéthylène	mg/kg MS			* <0.10			* <0.10		
LS0YQ : Trans-1,2-dichloroéthylène	mg/kg MS			* <0.10			* <0.10		
LS0YR : cis 1,2-Dichloroéthylène	mg/kg MS			* <0.10			* <0.10		
LS0YS : Chloroforme	mg/kg MS			* <0.02			* <0.02		
LS0Y2 : Tetrachlorométhane	mg/kg MS			* <0.02			* <0.02		
LS0YN: 1,1-Dichloroéthane	mg/kg MS			* <0.10			* <0.10		
LS0XY: 1,2-dichloroéthane	mg/kg MS			* <0.05			* <0.05		
LS0YL: 1,1,1-trichloroéthane	mg/kg MS			* <0.10			* <0.10		
LS0YZ: 1,1,2-Trichloroéthane	mg/kg MS			* <0.20			* <0.20		
LS0Y0 : Trichloroéthylène	mg/kg MS			* <0.05			* <0.05		
LS0XZ : Tetrachloroéthylène	mg/kg MS			* <0.05			* <0.05		
LS0Z1 : Bromochlorométhane	mg/kg MS			* <0.20			* <0.20		
LS0Z0 : Dibromométhane	mg/kg MS			* <0.20			* <0.20		
LS0XX : 1,2-Dibromoéthane	mg/kg MS			* <0.05			* <0.05		
LS0YY : Bromoforme (tribromométhane)	mg/kg MS			* <0.20			* <0.20		
LS0Z2 : Bromodichlorométhane	mg/kg MS			* <0.20			* <0.20		
LS0Z3 : Dibromochlorométhane	mg/kg MS			* <0.20			* <0.20		
LS0XU : Benzène	mg/kg MS			* <0.05			* <0.05		
LS0Y4 : Toluène	mg/kg MS			* <0.05			* <0.05		
LS0XW : Ethylbenzène	mg/kg MS			* <0.05			* <0.05		
LS0Y6 : o-Xylène	mg/kg MS			* <0.05			* <0.05		
LS0Y5 : m+p-Xylène	mg/kg MS			* <0.05			* <0.05		
LS0IK : Somme des BTEX	mg/kg MS			<0.0500			<0.0500		
Lixiviation									
LSA36 : Lixiviation 1x24 heures									
Lixiviation 1x24 heures				* Fait			* Fait		
Refus pondéral à 4 mm	% P.B.			* 34.6			* 46.0		
XXS4D : Pesée échantillon lixiviation									
Volume	ml			* 240			* 240		
Masse	g			* 24.4			* 23.6		

Analyses immédiates sur éluat

8.2

8.3

LSQ13: Mesure du pH sur éluat pH (Potentiel d'Hydrogène)

RAPPORT D'ANALYSE

Version du : 26/03/2018

Date de réception : 19/03/2018

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

N° Echantillon		001	002	003	004	005	006		
Référence client :		PM1 (0.1-0.3)	PM1 (0.3-1)	PM1 (1-1.7)	PM2 (0.15-0.3)	PM2 (0.3-0.6)	PM2 (0.6-1.3)		
Matrice :		SOL	SOL	SOL	` sol ´	SOL	SOL		
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018		
Date de début d'analyse :		19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018		
Analyses immédiates sur éluat									
LSQ13 : Mesure du pH sur éluat									
Température de mesure du pH	°C			20			18		
LSQ02 : Conductivité à 25°C sur éluat									
Conductivité corrigée automatiquement à 25°C	μS/cm			* 98			* 131		
Température de mesure de la conductivité	°C			20.1			20.4		
LSM46 : Résidu sec à 105°C (Fraction s éluat	oluble) sur								
Résidus secs à 105 °C	mg/kg MS			* 3670			* 5720		
Résidus secs à 105°C (calcul)	% MS			* 0.4			* 0.6		
	İ	Indices de	pollution s	ur éluat					
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg MS			* 79			* 91		
LS04Y : Chlorures sur éluat	mg/kg MS			* 24.9			* 18.0		
LSN71 : Fluorures sur éluat	mg/kg MS			* 9.90			* 5.18		
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS			* 159			* 169		
LSM90 : Indice phénol sur éluat	mg/kg MS			* <0.50			* <0.51		
Métaux sur éluat									
LSM04 : Arsenic (As) sur éluat	mg/kg MS			* <0.20			* <0.20		
LSM05 : Baryum (Ba) sur éluat	mg/kg MS			* 1.22			* 0.79		
LSM11 : Chrome (Cr) sur éluat	mg/kg MS			* <0.10			* <0.10		
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS			* <0.20			* <0.20		
LSN26 : Molybdène (Mo) sur éluat	mg/kg MS			* 0.020			* 0.011		
LSM20 : Nickel (Ni) sur éluat	mg/kg MS			* <0.10			* <0.10		
LSM22 : Plomb (Pb) sur éluat	mg/kg MS			* 0.23			* <0.10		
LSM35 : Zinc (Zn) sur éluat	mg/kg MS			* 0.24			* <0.20		
LS04W : Mercure (Hg) sur éluat	mg/kg MS			* <0.001			* <0.001		
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS			* 0.012			* 0.006		
LSN05 : Cadmium (Cd) sur éluat	mg/kg MS			* <0.002			* <0.002		
LSN41 : Sélénium (Se) sur éluat	mg/kg MS			* <0.01			* <0.01		
` '									

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018 Date de réception : 19/03/2018

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		007 PM3 (0-0.2) SOL 15/03/2018 19/03/2018	008 PM3 (0.3-1.6) SOL 15/03/2018 19/03/2018	009 PM3 (1.6-2) SOL 15/03/2018 20/03/2018	010 PM4 (0.1-0.2) SOL 15/03/2018 19/03/2018	011 PM4 (0.2-1.2) SOL 15/03/2018 19/03/2018	012 PM4 (1.2-2) SOL 15/03/2018 20/03/2018		
Administratif									
LS0IR : Mise en réserve de l'échantillon (en option)									
Préparation Physico-Chimique									
LS896 : Matière sèche	% P.B.			* 83.8			* 88.3		
XXS07 : Refus Pondéral à 2 mm	% P.B.			* 9.94			* 31.5		
XXS06 : Séchage à 40°C				* -			* -		
Indices de pollution									
LS08X : Carbone Organique Total (COT)	mg/kg MS			* 11900			* 2200		
Métaux									
XXS01 : Minéralisation eau régale -				* -			* -		
Bloc chauffant	mg/kg MS			* <1.00			* <1.00		
LS863 : Antimoine (Sb)	mg/kg MS			* 10.6			* 12.9		
LS865 : Arsenic (As) LS866 : Baryum (Ba)	mg/kg MS			* 117			* 302		
LS870 : Cadmium (Cd)	mg/kg MS			* <0.40			* <0.40		
LS872 : Chrome (Cr)	mg/kg MS			* 9.92			* 9.03		
LS874 : Cuivre (Cu)	mg/kg MS			* 52.8			* 5.76		
LS880 : Molybdène (Mo)	mg/kg MS			* <1.00			* <1.00		
LS881 : Nickel (Ni)	mg/kg MS			* 7.49			* 9.56		
LS883 : Plomb (Pb)	mg/kg MS			* 51.9			* 30.5		
LS885 : Sélénium (Se)	mg/kg MS			<1.00			<1.00		
LS894 : Zinc (Zn)	mg/kg MS			* 59.7			* 32.6		
LSA09 : Mercure (Hg)	mg/kg MS			* <0.10			* <0.10		
Hydrocarbures totaux									
LS919: Hydrocarbures totaux (4 tran	nches)								
(C10-C40) Indice Hydrocarbures (C10-C40)	mg/kg MS			* <15.0			* <15.0		
HCT (nC10 - nC16) (Calcul)	mg/kg MS			<4.00			<4.00		
HCT (>nC16 - nC22) (Calcul)	mg/kg MS			<4.00			<4.00		
HCT (>nC22 - nC30) (Calcul)	mg/kg MS			<4.00			<4.00		
HCT (>nC30 - nC40) (Calcul)	mg/kg MS			<4.00			<4.00		
Hydrocarbures Aromatiques Polycycliques (HAPs)									

012

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception : 19/03/2018

009

011

010

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

N° Echantillon

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

800

007

IN Lonarillion		001	000	000	0.10	011	0.2
Référence client :		PM3 (0-0.2)	PM3 (0.3-1.6)	PM3 (1.6-2)	PM4 (0.1-0.2)	PM4 (0.2-1.2)	PM4 (1.2-2)
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018
Date de début d'analyse :		19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018
	Hydrocarbu	ıres Aroma	atiques Pol	ycycliques	(HAPs)		
LSA33 : Hydrocarbures Aromatiq	ues Polycycliques						
(16 HAPs)	, , , , , , , , , , , , , , , , , , , ,						
Naphtalène	mg/kg MS			* <0.05			* <0.05
Acénaphthylène	mg/kg MS			* <0.05			* <0.05
Acénaphtène	mg/kg MS			* <0.05			* <0.05
Fluorène	mg/kg MS			* <0.05			* <0.05
Phénanthrène	mg/kg MS			* 0.13			* <0.05
Anthracène	mg/kg MS			* <0.05			* <0.05
Fluoranthène	mg/kg MS			* 0.13			* <0.05
Pyrène	mg/kg MS			* 0.15			* <0.05
Benzo-(a)-anthracène	mg/kg MS			* 0.059			* <0.05
Chrysène	mg/kg MS			* 0.058			* <0.05
Benzo(b)fluoranthène	mg/kg MS			* 0.081			* <0.05
Benzo(k)fluoranthène	mg/kg MS			* <0.05			* <0.05
Benzo(a)pyrène	mg/kg MS			* 0.12			* <0.05
Dibenzo(a,h)anthracène	mg/kg MS			* <0.05			* <0.05
Benzo(ghi)Pérylène	mg/kg MS			* <0.05			* <0.05
Indeno (1,2,3-cd) Pyrène	mg/kg MS			* <0.05			* <0.05
Somme des HAP	mg/kg MS			0.73			<0.05
	F	Polychloro	biphényles	(PCBs)			
LSA42 : PCB congénères régleme	entaires (7)						
PCB 28	mg/kg MS			* <0.01			* <0.01
PCB 52	mg/kg MS			* <0.01			* <0.01
PCB 101	mg/kg MS			* <0.01			* <0.01
PCB 118	mg/kg MS			* <0.01			* <0.01
PCB 138	mg/kg MS			* <0.01			* <0.01
PCB 153	mg/kg MS			* <0.01			* <0.01
PCB 180	mg/kg MS			* <0.01			* <0.01
SOMME PCB (7)	mg/kg MS			<0.01			<0.01
		Comp	osés Volat	ils			
LS00D : Hydrocarbures volatils to	otaux (MeC5 - C10)						
MeC5 - C8 inclus	mg/kg MS			<1.00			<1.00
> C8 - C10 inclus	mg/kg MS			<1.00			<1.00
Somme MeC5 - C10	mg/kg MS			<1.00			<1.00
LS0Y1 : Dichlorométhane	mg/kg MS			* <0.05			* <0.05
LS0XT : Chlorure de vinyle	mg/kg MS			* <0.02			* <0.02
LS0YP: 1,1-Dichloroéthylène	mg/kg MS			* <0.10			* <0.10
•							

RAPPORT D'ANALYSE

Version du : 26/03/2018

Date de réception : 19/03/2018

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

Référence Commande : AF.3ELY.18.0005									
N° Echantillon	007	800	009	010	011	012			
Référence client :	PM3 (0-0.2)	PM3 (0.3-1.6)	PM3 (1.6-2)	PM4 (0.1-0.2)	PM4 (0.2-1.2)	PM4 (1.2-2)			
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL			
Date de prélèvement :	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018			
Date de début d'analyse :	19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018			
Composés Volatils									

Matrice:		SOL	SOL	SOL	SOL	SOL		SOL			
Date de prélèvement :		15/03/2018	15/03/2018	15/03/201		15/03/2018		3/2018			
Date de début d'analyse :		19/03/2018	19/03/2018	20/03/201	8 19/03/2018	19/03/2018	20/0	03/2018			
Composés Volatils											
LS0YQ : Trans-1,2-dichloroéthylène	mg/kg MS			* <0.10			*	<0.10			
LS0YR : cis 1,2-Dichloroéthylène	mg/kg MS			* <0.10			*	<0.10			
LS0YS : Chloroforme	mg/kg MS			* <0.02			*	<0.02			
LS0Y2: Tetrachlorométhane	mg/kg MS			* <0.02			*	<0.02			
LS0YN: 1,1-Dichloroéthane	mg/kg MS			* <0.10			*	<0.10			
LS0XY: 1,2-dichloroéthane	mg/kg MS			* <0.05			*	<0.05			
LS0YL: 1,1,1-trichloroéthane	mg/kg MS			* <0.10			*	<0.10			
LS0YZ: 1,1,2-Trichloroéthane	mg/kg MS			* <0.20			*	<0.20			
LS0Y0 : Trichloroéthylène	mg/kg MS			* <0.05			*	<0.05			
LS0XZ : Tetrachloroéthylène	mg/kg MS			* <0.05			*	<0.05			
LS0Z1 : Bromochlorométhane	mg/kg MS			* <0.20			*	<0.20			
LS0Z0 : Dibromométhane	mg/kg MS			* <0.20			*	<0.20			
LS0XX: 1,2-Dibromoéthane	mg/kg MS			* <0.05			*	<0.05			
LS0YY : Bromoforme (tribromométhane)	mg/kg MS			* <0.20			*	<0.20			
LS0Z2 : Bromodichlorométhane	mg/kg MS			* <0.20			*	<0.20			
LS0Z3: Dibromochlorométhane	mg/kg MS			* <0.20			*	<0.20			
LS0XU : Benzène	mg/kg MS			* <0.05			*	<0.05			
LS0Y4 : Toluène	mg/kg MS			* <0.05			*	<0.05			
LS0XW : Ethylbenzène	mg/kg MS			* <0.05			*	<0.05			
LS0Y6 : o-Xylène	mg/kg MS			* <0.05			*	<0.05			
LS0Y5 : m+p-Xylène	mg/kg MS			* <0.05			*	<0.05			
LS0IK : Somme des BTEX	mg/kg MS			<0.0500			<	0.0500			
Lixiviation											
LSA36 : Lixiviation 1x24 heures											
Lixiviation 1x24 heures				* Fait			*	Fait			
Refus pondéral à 4 mm	% P.B.			* 42.7			*	51.2			
XXS4D : Pesée échantillon lixiviation											
Volume	ml			* 240			*	240			
Masse	g			* 24.5			*	24.5			
	Α	nalyses im	médiates	sur éluat							

	Analyses immédiates sur éluat										
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)				*	8.2			*	8.3		
Température de mesure du pH LSQ02 : Conductivité à 25°C sur éluat	°C				19				20		

RAPPORT D'ANALYSE

Version du : 26/03/2018

Date de réception : 19/03/2018

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

N° Echantillon		007	800	009	010	011	012	
Référence client :		PM3 (0-0.2)	PM3 (0.3-1.6)	PM3 (1.6-2)	PM4 (0.1-0.2)	PM4 (0.2-1.2)	PM4 (1.2-2)	
Matrice:		SOL	SOL	SOL	SOL	SOL	SOL	
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	
Date de début d'analyse :		19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018	
Analyses immédiates sur éluat								
LSQ02 : Conductivité à 25°C sur éluat								
Conductivité corrigée automatiquement à 25°C	μS/cm			* 1620			* 96	
Température de mesure de la conductivité	°C			18.8			19.9	
LSM46 : Résidu sec à 105°C (Fraction se éluat	oluble) sur							
Résidus secs à 105 °C	mg/kg MS			* 15000			* <2000	
Résidus secs à 105°C (calcul)	% MS			* 1.5			* <0.2	
	ı	ndicae da	pollution s	ur áluat				
	•	nuices de	poliution s	ui eiuat				
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg MS			* 68			* 64	
LS04Y : Chlorures sur éluat	mg/kg MS			* 99.8			* 10.1	
LSN71 : Fluorures sur éluat	mg/kg MS			* <5.00			* 7.72	
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS			* 9310			* 135	
LSM90 : Indice phénol sur éluat	mg/kg MS			* <0.50			* <0.50	
		Méta	ux sur élua	at				
LSM04 : Arsenic (As) sur éluat	mg/kg MS			* <0.20			* <0.20	
LSM05 : Baryum (Ba) sur éluat	mg/kg MS			* 0.47			* 0.41	
LSM11 : Chrome (Cr) sur éluat	mg/kg MS			* <0.10			* <0.10	
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS			* <0.20			* <0.20	
LSN26 : Molybdène (Mo) sur éluat	mg/kg MS			* 0.088			* 0.014	
LSM20 : Nickel (Ni) sur éluat	mg/kg MS			* <0.10			* <0.10	
LSM22 : Plomb (Pb) sur éluat	mg/kg MS			* <0.10			* <0.10	
LSM35 : Zinc (Zn) sur éluat	mg/kg MS			* <0.20			* <0.20	
LS04W : Mercure (Hg) sur éluat	mg/kg MS			* <0.001			* <0.001	
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS			* 0.034			* 0.008	
LSN05 : Cadmium (Cd) sur éluat	mg/kg MS			* <0.002			* <0.002	
LSN41 : Sélénium (Se) sur éluat	mg/kg MS			* <0.01			* <0.01	

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018 Date de réception : 19/03/2018

N° Echantillon		013		014	015	016		017	018	
Référence client :		PM5 (0.1-0.2)	PM:	5 (0.2-1.2)	PM5 (1.2-1.6)	PM5 (1.6-2)	РМ6	(0.1-0.4)	PM6 (0.4-1)	
Matrice:		SOL		SOL	SOL	SOL		SOL	SOL	
Date de prélèvement :		15/03/2018		03/2018	15/03/2018	15/03/2018	15/	03/2018	15/03/2018	
Date de début d'analyse :		19/03/2018	20	/03/2018	19/03/2018	19/03/2018	20/	03/2018	19/03/2018	
		Ad	min	istratif						
LSOIR : Mise en réserve de l'échantillon (en option)										
	P	réparation	Ph	ysico-C	himique					
LS896 : Matière sèche	% P.B.		*	86.7			*	88.3		
XXS07 : Refus Pondéral à 2 mm	% P.B.		*	19.0			*	18.5		
XXS06 : Séchage à 40°C			*	-			*	-		
Indices de pollution										
LS08X : Carbone Organique Total (COT)	mg/kg MS		*	2670			*	7530		
Métaux										
XXS01 : Minéralisation eau régale -			*	-			*	-		
Bloc chauffant	" 140			4.00				4.00		
LS863 : Antimoine (Sb)	mg/kg MS			<1.00				<1.00		
LS865 : Arsenic (As)	mg/kg MS		*	8.82 178			*	10.1 98.7		
LS866 : Baryum (Ba)	mg/kg MS mg/kg MS		*	<0.40			*	<0.40		
LS870 : Cadmium (Cd)	mg/kg MS		*	10.9			*	20.6		
LS872 : Chrome (Cr)	mg/kg MS		*	8.05			*	52.3		
LS874 : Cuivre (Cu) LS880 : Molybdène (Mo)	mg/kg MS		*	<1.00			*	<1.00		
LS881 : Nickel (Ni)	mg/kg MS		*	10.9			*	18.0		
LS883 : Plomb (Pb)	mg/kg MS		*	31.6			*	35.6		
LS885 : Sélénium (Se)	mg/kg MS			<1.00				<1.00		
LS894 : Zinc (Zn)	mg/kg MS		*	33.9			*	45.1		
LSA09 : Mercure (Hg)	mg/kg MS		*	<0.10			*	0.14		
Hydrocarbures totaux										
LS919 : Hydrocarbures totaux (4 tra	anches)									
(C10-C40)				4= 6				0.4.0		
Indice Hydrocarbures (C10-C40)	mg/kg MS		*	<15.0			*	<21.3		
HCT (nC10 - nC16) (Calcul)	mg/kg MS			<4.00 <4.00				<4.00 <4.00		
HCT (>nC16 - nC22) (Calcul) HCT (>nC22 - nC30) (Calcul)	mg/kg MS mg/kg MS			<4.00 <4.00				<4.00		
HCT (>nC30 - nC40) (Calcul)	mg/kg MS			<4.00				<4.00		
		Iros Aroma	ıti~	uos Dol	vovoligues	(HADa)				
	Hydrocarbi	ires Aroina	ıuq	ues Poi	ycychques	(HAPS)				

RAPPORT D'ANALYSE

Dossier N°: 18E026531

Version du : 26/03/2018

N° de rapport d'analyse : AR-18-LK-037805-01

Date de réception : 19/03/2018

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

N° Echantillon Référence client : Matrice :		013 PM5 (0.1-0.2) SOL	014 PM5 (0.2-1.2) SOL	015 PM5 (1.2-1.6) SOL	016 PM5 (1.6-2) SOL	017 PM6 (0.1-0.4) SOL	018 PM6 (0.4-1) SOL
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018
Date de début d'analyse :		19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018	19/03/2018
	Hydrocarbi	ures Aroma	tiques Pol	ycycliques	(HAPs)		
LSA33 : Hydrocarbures Aromatiq	ues Polycycliques						
(16 HAPs)	ma/ka MC		* <0.05			* <0.055	
Naphtalène	mg/kg MS		* <0.05			* <0.061	
Acénaphthylène	mg/kg MS						
Acénaphtène	mg/kg MS		* <0.05			* <0.07	
Fluorène	mg/kg MS		* <0.05			* <0.061	
Phénanthrène	mg/kg MS		* <0.05			* <0.071	
Anthracène	mg/kg MS		* <0.05			* <0.07	
Fluoranthène	mg/kg MS		* <0.05			* 0.069	
Pyrène	mg/kg MS		* <0.05			* <0.061	
Benzo-(a)-anthracène	mg/kg MS		* <0.05			* <0.067	
Chrysène	mg/kg MS		* <0.05			* <0.089	
Benzo(b)fluoranthène	mg/kg MS		* <0.05			* <0.078	
Benzo(k)fluoranthène	mg/kg MS		* <0.05			* <0.08	
Benzo(a)pyrène	mg/kg MS		* <0.05			* <0.067	
Dibenzo(a,h)anthracène	mg/kg MS		* <0.05			* <0.076	
Benzo(ghi)Pérylène	mg/kg MS		* <0.05			* <0.076	
Indeno (1,2,3-cd) Pyrène	mg/kg MS		* <0.05			* <0.078	
Somme des HAP	mg/kg MS		<0.05			0.069	
	I	Polychlorol	biphényles	(PCBs)			
LSA42 : PCB congénères régleme	entaires (7)						
PCB 28	mg/kg MS		* <0.01			* <0.01	
PCB 52	mg/kg MS		* <0.01			* <0.01	
PCB 101	mg/kg MS		* <0.01			* <0.02	
PCB 118	mg/kg MS		* <0.01			* <0.02	
PCB 138	mg/kg MS		* <0.01			* <0.02	
PCB 153	mg/kg MS		* <0.01			* <0.02	
PCB 180	mg/kg MS		* <0.01			* <0.02	
SOMME PCB (7)	mg/kg MS		<0.01			<0.02	
		Comp	osés Volat	ils			
LS00D : Hydrocarbures volatils to	otaux (MaC5 - C10)						
MeC5 - C8 inclus	mg/kg MS		<1.00			<1.00	
> C8 - C10 inclus	mg/kg MS		<1.00			<1.00	
Somme MeC5 - C10			<1.00			<1.00	
	mg/kg MS						
LS0Y1 : Dichlorométhane	mg/kg MS		* <0.05			* <0.05	
LS0XT : Chlorure de vinyle	mg/kg MS		* <0.02			* <0.02	

LS0YP: 1,1-Dichloroéthylène

<0.10

mg/kg MS

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Date de r

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018 Date de réception : 19/03/2018

N° Echantillon		013	014	015	016	017	018			
Référence client :			PM5 (0.2-1.2)		PM5 (1.6-2)	PM6 (0.1-0.4)	PM6 (0.4-1)			
Matrice:		SOL	SOL	SOL	SOL	SOL	SOL			
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018			
Date de début d'analyse :		19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018	19/03/2018			
		Comp	osés Volat	ils						
- 42 8 4 6 8						* <0.10				
LS0YQ: Trans-1,2-dichloroéthylène	mg/kg MS		* <0.10			~0.10				
LS0YR : cis 1,2-Dichloroéthylène	mg/kg MS		* <0.10 * <0.02			* <0.10 * <0.02				
LS0YS : Chloroforme	mg/kg MS		* <0.02			* <0.02				
LS0Y2 : Tetrachlorométhane	mg/kg MS mg/kg MS		* <0.02 * <0.10			* <0.10				
LS0YN: 1,1-Dichloroéthane			* <0.10			* <0.05				
LS0XY: 1,2-dichloroéthane	mg/kg MS mg/kg MS		* <0.05			* <0.05				
LS0YL: 1,1,1-trichloroéthane	mg/kg MS		* <0.20			* <0.20				
LS0YZ: 1,1,2-Trichloroéthane	mg/kg MS		* <0.05			* <0.05				
LS0Y0: Trichloroéthylène			* <0.05			* <0.05				
LS0XZ: Tetrachloroéthylène	mg/kg MS		* <0.20			* <0.20				
LS0Z1 : Bromochlorométhane	mg/kg MS mg/kg MS		* <0.20			* <0.20				
LS0Z0 : Dibromométhane	mg/kg MS		* <0.05			* <0.05				
LS0XX: 1,2-Dibromoéthane	mg/kg MS		* <0.20			* <0.20				
LS0YY : Bromoforme (tribromométhane)	mg/kg ws		<0.20			<0.20				
LS0Z2 : Bromodichlorométhane	mg/kg MS		* <0.20			* <0.20				
LS0Z3 : Dibromochlorométhane	mg/kg MS		* <0.20			* <0.20				
LS0XU : Benzène	mg/kg MS		* <0.05			* <0.05				
LS0Y4 : Toluène	mg/kg MS		* <0.05			* <0.05				
LS0XW : Ethylbenzène	mg/kg MS		* <0.05			* <0.05				
LS0Y6 : o-Xylène	mg/kg MS		* <0.05			* <0.05				
LS0Y5 : m+p-Xylène	mg/kg MS		* <0.05			* <0.05				
LS0IK : Somme des BTEX	mg/kg MS		<0.0500			<0.0500				
Lixiviation										
LSA36 : Lixiviation 1x24 heures										
Lixiviation 1x24 heures			* Fait			* Fait				
Refus pondéral à 4 mm	% P.B.		* 52.4			* 33.8				
XXS4D : Pesée échantillon lixiviation										
Volume	ml		* 240			* 240				
Masse	g		* 30.7			* 24.00				
Analyses immédiates sur éluat										
LSQ13 : Mesure du pH sur éluat										
pH (Potentiel d'Hydrogène)			* 8.00			* 8.3				
Température de mesure du pH	°C		20			18				
LSQ02 : Conductivité à 25°C sur éluat										

RAPPORT D'ANALYSE

Version du : 26/03/2018

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Date de réception : 19/03/2018

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

N° Echantillon	013	014	015	016	017	018				
		PM5 (0.2-1.2)		PM5 (1.6-2)	PM6 (0.1-0.4)	PM6 (0.4-1)				
Référence client : Matrice :	SOL	SOL	SOL	SOL	SOL	SOL				
Date de prélèvement :	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018				
Date de début d'analyse :	19/03/2018	20/03/2018	19/03/2018	19/03/2018	20/03/2018	19/03/2018				
				13/03/2010	20/03/2010	19/03/2010				
A	nalyses im	imédiates :	sur éluat							
LSQ02 : Conductivité à 25°C sur éluat										
Conductivité corrigée automatiquement à µS/cm 25°C		* 111			* 96					
Température de mesure de la conductivité °C		20.4			19.2					
LSM46 : Résidu sec à 105°C (Fraction soluble) sur										
éluat Résidus secs à 105 °C mg/kg MS		* 4170			* 11900					
Résidus secs à 105°C (calcul) % MS		* 0.4			* 1.2					
			**		1.2					
Indices de pollution sur éluat										
LSM68 : Carbone Organique par mg/kg MS oxydation (COT) sur éluat		* 85			* 110					
LS04Y : Chlorures sur éluat mg/kg MS		* 25.0			* 28.7					
LSN71 : Fluorures sur éluat mg/kg MS		* 10.4			* 8.60					
LS04Z : Sulfate (SO4) sur éluat mg/kg MS		* 192			* 150					
LSM90 : Indice phénol sur éluat mg/kg MS		* <0.51			* <0.50					
	Méta	ux sur élua	at							
LSM04 : Arsenic (As) sur éluat mg/kg MS		* <0.20			* <0.20					
LSM05 : Baryum (Ba) sur éluat mg/kg MS		* 1.01			* 1.64					
LSM11 : Chrome (Cr) sur éluat mg/kg MS		* <0.10			* <0.10					
LSM13 : Cuivre (Cu) sur éluat mg/kg MS		* <0.20			* 0.23					
LSN26 : Molybdène (Mo) sur éluat mg/kg MS		* 0.018			* 0.036					
LSM20 : Nickel (Ni) sur éluat mg/kg MS		* <0.10			* <0.10					
LSM22 : Plomb (Pb) sur éluat mg/kg MS		* <0.10			* 0.26					
LSM35 : Zinc (Zn) sur éluat mg/kg MS		* <0.20			* <0.20					
LS04W : Mercure (Hg) sur éluat mg/kg MS		* <0.001			* <0.001					
LSM97 : Antimoine (Sb) sur éluat mg/kg MS		* 0.006			* 0.006					
LSN05 : Cadmium (Cd) sur éluat mg/kg MS		* <0.002			* <0.002					
LSN41 : Sélénium (Se) sur éluat mg/kg MS		* <0.01			* <0.01					

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018 Date de réception : 19/03/2018

Référence client : PM7 (0.15-0.3) (0.15-0.3) SOL PM7 (0.3-1.3) PM7 (1.3-2) (0.15-0.3) SOL PM8 (0.3-0.8) PM9 (0.1-0.9) (0.15-0.3) SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL SOL											
Matrice : SOL S											
Date de prélèvement : 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 19											
Date de début d'analyse : 19/03/2018 19/03/2018 20/03/2018 20/03/2018 19/03/2018 19/03/2018 Administratif											
Administratif											
COID · Mica on récorve do											
'échantillon (en option)											
Préparation Physico-Chimique											
_S896 : Matière sèche											
XXS07 : Refus Pondéral à 2 mm											
XXS06 : Séchage à 40°C											
Indices de pollution											
LS08X : Carbone Organique Total mg/kg MS * 1890 * 9250											
COT)											
Métaux											
XXS01 : Minéralisation eau régale - * - * -											
Bloc chauffant											
25.003 : Affiliation (Sb)											
25865 : Arsenic (As) Hig/kg Wi3											
25800: baryum (ba) mg/kg Wi5											
20.40 U.Samium (Cd) Hig/kg Mis											
.5872 : Chrome (Cr) Hig/kg W/5											
.5874 : Culvre (Cu) Hig/kg Wi3											
21.00 and the control of the control											
2.5881 : NICKEI (NI) 119/Ng W/3											
_S883 : Plomb (Pb) mg/kg MS * 39.6 * 46.4											
_S885 : Sélénium (Se) mg/kg MS <1.00 <1.00											
_S894 : Zinc (Zn)											
SA09 : Mercure (Hg) mg/kg MS * <0.10 * 0.46											
Hydrocarbures totaux											
S919 : Hydrocarbures totaux (4 tranches)											
(C10-C40) Indice Hydrocarbures (C10-C40)											
HCT (nC10 - nC16) (Calcul) mg/kg MS <4.00 <4.00											
HCT (>nC16 - nC22) (Calcul) mg/kg MS <4.00 <4.00											
HCT (>nC22 - nC30) (Calcul) mg/kg MS <4.00 <4.00											
HCT (>nC30 - nC40) (Calcul) mg/kg MS <4.00 <4.00											

RAPPORT D'ANALYSE

Dossier N°: 18E026531

 N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

N° Echantillon

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

020

019

Date de réception : 19/03/2018

021

022

023

024

N Echantilion		019	020	021	022	023	024
Référence client :		PM7 (0.15-0.3)	PM7 (0.3-1.3)	PM7 (1.3-2	PM8 (0.15-0.3)	PM8 (0.3-0.8)	PM9 (0.1-0.9)
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018		15/03/2018	15/03/2018
Date de début d'analyse :		19/03/2018	19/03/2018	20/03/2018		19/03/2018	19/03/2018
	Hydrocarbı	ures Aroma	atiques Pol	ycyclique	es (HAPs)		
LSA33 : Hydrocarbures Aromatique (16 HAPs)	es Polycycliques						
Naphtalène	mg/kg MS			* <0.05	* <0.05		
Acénaphthylène	mg/kg MS			* <0.05	* <0.05		
Acénaphtène	mg/kg MS			* <0.05	* <0.05		
Fluorène	mg/kg MS			* <0.05	* <0.05		
Phénanthrène	mg/kg MS			* <0.05	* <0.05		
Anthracène	mg/kg MS			* <0.05	* <0.05		
Fluoranthène	mg/kg MS			* <0.05	* 0.15		
Pyrène	mg/kg MS			* <0.05	* 0.16		
Benzo-(a)-anthracène	mg/kg MS			* <0.05	* 0.12		
Chrysène	mg/kg MS			* <0.05	* 0.15		
Benzo(b)fluoranthène	mg/kg MS			* <0.05	* 0.27		
Benzo(k)fluoranthène	mg/kg MS			* <0.05	* 0.14		
Benzo(a)pyrène	mg/kg MS			* <0.05	* 0.12		
Dibenzo(a,h)anthracène	mg/kg MS			* <0.05	* 0.055		
Benzo(ghi)Pérylène	mg/kg MS			* <0.05	* 0.085		
Indeno (1,2,3-cd) Pyrène	mg/kg MS			* <0.05	* 0.097		
Somme des HAP	mg/kg MS			<0.05	1.3		
	ı	Polychloro	biphényles	(PCBs)			
LSA42 : PCB congénères réglemen							
PCB 28	mg/kg MS			* <0.01	* <0.01		
PCB 52	mg/kg MS			* <0.01	* <0.01		
PCB 101	mg/kg MS			* <0.01	* <0.01		
PCB 118	mg/kg MS			* <0.01	* <0.01		
PCB 138	mg/kg MS			* <0.01	* <0.01		
PCB 153	mg/kg MS			* <0.01	* <0.01		
PCB 180	mg/kg MS			* <0.01	* <0.01		
SOMME PCB (7)	mg/kg MS			<0.01	<0.01		
		•	osés Volat	ils			
LS00D : Hydrocarbures volatils tot							
MeC5 - C8 inclus	mg/kg MS			<1.00	<1.00		
> C8 - C10 inclus	mg/kg MS			<1.00	<1.00		
Somme MeC5 - C10	mg/kg MS			<1.00	<1.00		
LS0Y1 : Dichlorométhane	mg/kg MS			* <0.05	* <0.05		
LS0XT : Chlorure de vinyle	mg/kg MS			* <0.02	* <0.02		

www.cofrac.fr

Date de réception : 19/03/2018

RAPPORT D'ANALYSE

Dossier N°: 18E026531

 $\ensuremath{\text{N}^{\circ}}$ de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

021 022 023 N° Echantillon 019 020 024 PM8 (0.3-0.8) PM9 (0.1-0.9) PM7 PM7 (0.3-1.3) PM7 (1.3-2) PM8 Référence client : (0.15-0.3)(0.15 - 0.3)SOL SOL SOL SOL SOL SOL Matrice : Date de prélèvement : 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018 19/03/2018 Date de début d'analyse : 19/03/2018 19/03/2018 20/03/2018 20/03/2018 19/03/2018 Composés Volatils LS0YP: 1,1-Dichloroéthylène mg/kg MS <0.10 <0.10 <0.10 LS0YQ: Trans-1,2-dichloroéthylène ma/ka MS < 0.10 < 0.10 LS0YR: cis 1,2-Dichloroéthylène mg/kg MS < 0.10 mg/kg MS < 0.02 < 0.02 LS0YS: Chloroforme mg/kg MS < 0.02 < 0.02 LS0Y2 · Tetrachlorométhane < 0.10 < 0.10 LS0YN: 1,1-Dichloroéthane mg/kg MS LS0XY: 1,2-dichloroéthane mg/kg MS < 0.05 < 0.05 <0.10 <0.10 LS0YL: 1,1,1-trichloroéthane mg/kg MS <0.20 <0.20 LS0YZ: 1,1,2-Trichloroéthane ma/ka MS < 0.05 < 0.05 LS0Y0: Trichloroéthylène mg/kg MS mg/kg MS < 0.05 < 0.05 LS0XZ: Tetrachloroéthylène <0.20 LS0Z1: Bromochlorométhane mg/kg MS < 0.20 mg/kg MS <0.20 <0.20 LS0Z0: Dibromométhane < 0.05 LS0XX: 1,2-Dibromoéthane mg/kg MS < 0.05 LS0YY: Bromoforme mg/kg MS <0.20 <0.20 (tribromométhane) <0.20 <0.20 LS0Z2: Bromodichlorométhane mg/kg MS LS0Z3: Dibromochlorométhane mg/kg MS < 0.20 <0.20 < 0.05 < 0.05 LS0XU: Benzène mg/kg MS mg/kg MS < 0.05 < 0.05 LS0Y4: Toluène mg/kg MS < 0.05 < 0.05 LS0XW: Ethylbenzène < 0.05 < 0.05 LS0Y6: o-Xylène mg/kg MS LS0Y5: m+p-Xylène mg/kg MS < 0.05 < 0.05 <0.0500 <0.0500 LS0IK: Somme des BTEX mg/kg MS Lixiviation LSA36: Lixiviation 1x24 heures Lixiviation 1x24 heures Fait Fait % P.B. 38.3 Refus pondéral à 4 mm XXS4D : Pesée échantillon lixiviation Volume 240 240 ml Masse 30.8 24.2 q Analyses immédiates sur éluat

8.9

8.7

www.cofrac.fr

LSQ13 : **Mesure du pH sur éluat** pH (Potentiel d'Hydrogène)

RAPPORT D'ANALYSE

Dossier N°: 18E026531

Version du : 26/03/2018

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Date de réception : 19/03/2018

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

N° Echantillon	019	020	021	022	023	024				
Référence client :	PM7	PM7 (0.3-1.3)	PM7 (1.3-2)	PM8	PM8 (0.3-0.8)	PM9 (0.1-0.9)				
	(0.15-0.3)			(0.15-0.3)						
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL				
Date de prélèvement :	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018				
Date de début d'analyse :	19/03/2018	19/03/2018	20/03/2018	20/03/2018	19/03/2018	19/03/2018				
A	nalyses in	nmédiates :	sur éluat							
LSQ13 : Mesure du pH sur éluat										
Température de mesure du pH °C			20	18						
LSQ02 : Conductivité à 25°C sur éluat										
Conductivité corrigée automatiquement à µS/cm 25°C			* 163	* 126						
Température de mesure de la conductivité °C			20.7	19.7						
LSM46 : Résidu sec à 105°C (Fraction soluble) sur éluat										
Résidus secs à 105 °C mg/kg MS			* 10000	* 9510						
Résidus secs à 105°C (calcul) % MS			* 1.00	* 1.0						
Indices de pollution sur éluat										
LSM68 : Carbone Organique par mg/kg MS			* 89	* 140						
oxydation (COT) sur éluat										
LS04Y : Chlorures sur éluat mg/kg MS			* 53.1	* 57.1 * 7.26						
LSN71 : Fluorures sur éluat mg/kg MS			* 8.92	7.20						
LS04Z : Sulfate (SO4) sur éluat mg/kg MS			* 296	* 236						
LSM90 : Indice phénol sur éluat mg/kg MS			* <0.51	* <0.50						
	Méta	ux sur élua	at							
LSM04 : Arsenic (As) sur éluat mg/kg MS			* <0.20	* <0.20						
LSM05 : Baryum (Ba) sur éluat mg/kg MS			* 1.74	* 2.10						
LSM11 : Chrome (Cr) sur éluat mg/kg MS			* <0.10	* <0.10						
LSM13 : Cuivre (Cu) sur éluat mg/kg MS			* <0.20	* 0.47						
LSN26 : Molybdène (Mo) sur éluat mg/kg MS			* 0.016	* 0.033						
LSM20 : Nickel (Ni) sur éluat mg/kg MS			* <0.10	* <0.10						
LSM22 : Plomb (Pb) sur éluat mg/kg MS			* 0.14	* 0.36						
LSM35 : Zinc (Zn) sur éluat mg/kg MS			* 0.25	* 0.50						
LS04W : Mercure (Hg) sur éluat mg/kg MS			* <0.001	* 0.003						
LSM97 : Antimoine (Sb) sur éluat mg/kg MS			* 0.007	* 0.019						
LSN05 : Cadmium (Cd) sur éluat mg/kg MS			* <0.002	* <0.002						
LSN41 : Sélénium (Se) sur éluat mg/kg MS			* <0.01	* 0.011						

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018 Date de réception : 19/03/2018

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		PM9 ((0.9-1.1) (0.9-1.1) (6OL 3/2018 3/2018 Adi	026 PM10 (0.05-0.1) SOL 15/03/2018 19/03/2018 ministratif	15	027 PM10 (0.1-0.9) SOL 5/03/2018 0/03/2018	1	028 111 (0.1-0.8) SOL 5/03/2018 20/03/2018	029 PM12 (0-0.15) SOL 15/03/2018 19/03/2018	030 PM12 (0.15-0.3) SOL 15/03/2018 19/03/2018
LSOIR : Mise en réserve de l'échantillon (en option)							Г			
rechantmen (en option)	P	róna	ration	Physico-C	hir	minue				
				i ilysico-c	,,,,,	-				
LS896 : Matière sèche	% P.B.		91.0		*	95.0	*	91.4		
XXS07 : Refus Pondéral à 2 mm	% P.B.	*	29.3		*	20.6	*	9.19		
XXS06 : Séchage à 40°C		*	-		*	-	*	-		
		l	Indice	s de pollut	ion	l				
LS08X : Carbone Organique Total (COT)	mg/kg MS	*	1200		*	1350	*	<1000		
				Métaux						
XXS01 : Minéralisation eau régale -		*	-		*	-	*	-		
Bloc chauffant										
LS863 : Antimoine (Sb)	mg/kg MS		<1.00		*	<1.00	*	<1.00		
LS865 : Arsenic (As)	mg/kg MS	*	7.81		*	9.94	*	13.3		
LS866 : Baryum (Ba)	mg/kg MS	*	144		*	712	*	152		
LS870 : Cadmium (Cd)	mg/kg MS		<0.40		*	<0.40	*	<0.40		
LS872 : Chrome (Cr)	mg/kg MS		9.58		*	10.6	*	7.86		
LS874 : Cuivre (Cu)	mg/kg MS	*	11.4		*	<5.00	*	<5.00		
LS880 : Molybdène (Mo)	mg/kg MS	*	<1.00		*	<1.00	*	<1.00		
LS881 : Nickel (Ni)	mg/kg MS		12.3		*	23.9	*	8.27		
LS883 : Plomb (Pb)	mg/kg MS		72.7		*	39.8	*	30.0		
LS885 : Sélénium (Se)	mg/kg MS		<1.00			<1.00		<1.00		
LS894 : Zinc (Zn)	mg/kg MS	*	41.4		*	37.4	*	43.2		
LSA09 : Mercure (Hg)	mg/kg MS	*	<0.10		*	<0.10	*	<0.10		
		Н	ydroc	arbures to	tau	x				
LS919 : Hydrocarbures totaux (4 tran	ches)									
(C10-C40)										
Indice Hydrocarbures (C10-C40)	mg/kg MS		<17.8		*	<15.0	*	<19.0		
HCT (nC10 - nC16) (Calcul)	mg/kg MS		<4.00			<4.00		<4.00		
HCT (>nC16 - nC22) (Calcul) HCT (>nC22 - nC30) (Calcul)	mg/kg MS		<4.00 <4.00			<4.00 <4.00		<4.00 <4.00		
HCT (>nC30 - nC40) (Calcul)	mg/kg MS mg/kg MS		<4.00 <4.00			<4.00		<4.00 <4.00		
1.5. (*11000 11049) (Galicul)	mg/ng MO		-7.00			17.00		-7.00		

RAPPORT D'ANALYSE

Dossier N°: 18E026531

Version du : 26/03/2018

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Date de réception : 19/03/2018

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005

Référence Commande : AF.3ELY.18.0005

1 SA42 · PCB congénères réglementaires (7)

N° Echantillon	025	026	027	028	029	030
Référence client :	PM9 (0.9-1.1)	PM10	PM10	PM11 (0.1-0.8)	PM12 (0-0.15)	PM12
		(0.05-0.1)	(0.1-0.9)			(0.15-0.3)
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018
Date de début d'analyse :	20/03/2018	19/03/2018	20/03/2018	20/03/2018	19/03/2018	19/03/2018
I I value a sule		4! Dal	1!	/IIAD-\		

Hydrocarbures Aromatiques Polycycliques (HAPs)

LSA33 : Hydrocarbures Aromatiques F	Polycycliques						
(16 HAPs)							
Naphtalène	mg/kg MS	*	<0.053	*	<0.05	*	<0.05
Acénaphthylène	mg/kg MS	*	<0.059	*	<0.05	*	<0.05
Acénaphtène	mg/kg MS	*	<0.068	*	<0.05	*	<0.059
Fluorène	mg/kg MS	*	<0.059	*	<0.05	*	<0.05
Phénanthrène	mg/kg MS	*	<0.069	*	<0.05	*	<0.059
Anthracène	mg/kg MS	*	<0.067	*	<0.05	*	<0.058
Fluoranthène	mg/kg MS	*	<0.059	*	<0.05	*	<0.05
Pyrène	mg/kg MS	*	<0.059	*	<0.05	*	<0.05
Benzo-(a)-anthracène	mg/kg MS	*	<0.057	*	<0.05	*	<0.067
Chrysène	mg/kg MS	*	<0.076	*	<0.05	*	<0.088
Benzo(b)fluoranthène	mg/kg MS	*	<0.067	*	<0.05	*	<0.077
Benzo(k)fluoranthène	mg/kg MS	*	<0.068	*	<0.05	*	<0.079
Benzo(a)pyrène	mg/kg MS	*	<0.057	*	<0.05	*	<0.067
Dibenzo(a,h)anthracène	mg/kg MS	*	<0.065	*	<0.05	*	<0.075
Benzo(ghi)Pérylène	mg/kg MS	*	<0.065	*	<0.05	*	<0.075
Indeno (1,2,3-cd) Pyrène	mg/kg MS	*	<0.066	*	<0.05	*	<0.076
Somme des HAP	mg/kg MS		<0.076		<0.05		<0.088

Polychlorobiphényles (PCBs)

L	.SA42 . FOD Congeneres regiennentalie	3 (<i>i)</i>						
	PCB 28	mg/kg MS	*	<0.01	*	<0.01	*	<0.01
	PCB 52	mg/kg MS	*	<0.01	*	<0.01	*	<0.01
	PCB 101	mg/kg MS	*	<0.01	*	<0.01	*	<0.02
	PCB 118	mg/kg MS	*	<0.01	*	<0.01	*	<0.02
	PCB 138	mg/kg MS	*	<0.01	*	<0.01	*	<0.01
	PCB 153	mg/kg MS	*	<0.01	*	<0.01	*	<0.02
	PCB 180	mg/kg MS	*	<0.01	*	<0.01	*	<0.01
	SOMME PCB (7)	mg/kg MS		<0.01		<0.01		<0.02

Composés Volatils

LS00D : Hydrocarbures volatils to	otaux (MeC5 - C10))		
MeC5 - C8 inclus	mg/kg MS	<1.00	<1.00	<1.00
> C8 - C10 inclus	mg/kg MS	<1.00	<1.00	<1.00
Somme MeC5 - C10	mg/kg MS	<1.00	<1.00	<1.00
LS0Y1 : Dichlorométhane	mg/kg MS	* <0.05	* <0.05	* <0.05
LS0XT : Chlorure de vinyle	mg/kg MS	* <0.02	* <0.02	* <0.02

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

Date de réception : 19/03/2018

N° Echantillon			025	026		027		028	029	030
Référence client :		PM	9 (0.9-1.1)	PM10		PM10	P	PM11 (0.1-0.8)	PM12 (0-0.15)	PM12
Matrica			SOL	(0.05-0.1) SOL		(0.1-0.9) SOL		SOL	SOL	(0.15-0.3) SOL
Matrice : Date de prélèvement :		15	/03/2018	15/03/2018	11	5/03/2018		15/03/2018	15/03/2018	15/03/2018
Date de début d'analyse :)/03/2018	19/03/2018	-	0/03/2018		20/03/2018	19/03/2018	19/03/2018
Date de debut d'analyse .		20					L	20/03/2016	19/03/2016	19/03/2016
			Comp	osés Volat	iils					
LS0YP : 1,1-Dichloroéthylène mg/kg	MS	*	<0.10		*	<0.10	*	<0.10		
LS0YQ : Trans-1,2-dichloroéthylène mg/kg	MS	*	<0.10		*	<0.10	*	<0.10		
LS0YR : cis 1,2-Dichloroéthylène mg/kg	MS	*	<0.10		*	<0.10	*	<0.10		
LS0YS : Chloroforme mg/kg	MS	*	<0.02		*	<0.02	*	<0.02		
LS0Y2 : Tetrachlorométhane mg/kg	MS	*	<0.02		*	<0.02	*	<0.02		
LS0YN: 1,1-Dichloroéthane mg/kg	MS	*	<0.10		*	<0.10	*	<0.10		
LS0XY: 1,2-dichloroéthane mg/kg	MS	*	<0.05		*	<0.05	*	<0.05		
LS0YL : 1,1,1-trichloroéthane mg/kg	MS	*	<0.10		*	<0.10	*	<0.10		
LS0YZ : 1,1,2-Trichloroéthane mg/kg	MS	*	<0.20		*	<0.20	*	<0.20		
LS0Y0 : Trichloroéthylène mg/kg	MS	*	<0.05		*	<0.05	*	<0.05		
LS0XZ : Tetrachloroéthylène mg/kg	MS	*	< 0.05		*	<0.05	*	<0.05		
LS0Z1 : Bromochlorométhane mg/kg	MS	*	<0.20		*	<0.20	*	<0.20		
LS0Z0 : Dibromométhane mg/kg	MS	*	<0.20		*	<0.20	*	<0.20		
LS0XX : 1,2-Dibromoéthane mg/kg	MS	*	< 0.05		*	<0.05	*	<0.05		
LS0YY : Bromoforme mg/kg	MS	*	<0.20		*	<0.20	*	<0.20		
(tribromométhane)			2.22				*			
LS0Z2 : Bromodichlorométhane mg/kg			<0.20		*	<0.20		~0.20		
LS0Z3 : Dibromochlorométhane mg/kg		*	<0.20		*	<0.20	*	~0.20		
LS0XU : Benzène mg/kg		*	<0.05		*	<0.05	*	\0.03		
LS0Y4 : Toluène mg/kg		*	<0.05		*	<0.05	*	\0.03		
LS0XW : Ethylbenzène mg/kg		*	<0.05		*	<0.05	*	\0.03		
LS0Y6 : o-Xylène mg/kg		*	<0.05		*	<0.05	*	~ 0.03		
LS0Y5 : m+p-Xylène mg/kg		*	<0.05		*	<0.05	*	<0.05		
LS0IK : Somme des BTEX mg/kg	MS		<0.0500			<0.0500		<0.0500		
			Li	xiviation						
LSA36 : Lixiviation 1x24 heures							ľ			
Lixiviation 1x24 heures		*	Fait		*	Fait	*	Fait		
Refus pondéral à 4 mm % P	B.	*	43.7		*	54.8	*	70.2		
XXS4D : Pesée échantillon lixiviation							1			
Volume m		*	240		*	240	*	240		
Masse g		*	24.00		*	24.9	*	24.3		
	A	na	lyses im	médiates	su	r éluat				
LSQ13 : Mesure du pH sur éluat							Γ			
pH (Potentiel d'Hydrogène)		*	8.4		*	8.4	*	9.3		

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

Date de réception : 19/03/2018

N° Echantillon			025	026		027		028	029	030
Référence client :		PM9	9 (0.9-1.1)	PM10		PM10	PM	11 (0.1-0.8)	PM12 (0-0.15)	PM12
				(0.05-0.1)	((0.1-0.9)				(0.15-0.3)
Matrice :			SOL	SOL		SOL		SOL	SOL	SOL
Date de prélèvement :			/03/2018	15/03/2018		5/03/2018		5/03/2018	15/03/2018	15/03/2018
Date de début d'analyse :		20	/03/2018	19/03/2018	20	0/03/2018	20	0/03/2018	19/03/2018	19/03/2018
	A	Inal	yses im	médiates	sur	éluat				
LSQ13 : Mesure du pH sur éluat										
Température de mesure du pH	°C		20			20		21		
LSQ02 : Conductivité à 25°C sur éluat										
Conductivité corrigée automatiquement à 25°C	μS/cm	*	91		*	120	*	101		
Température de mesure de la conductivité	°C		20.0			20.2		20.9		
LSM46 : Résidu sec à 105°C (Fraction s éluat	soluble) sur									
Résidus secs à 105 °C	mg/kg MS	*	4010		*	5810	*	3920		
Résidus secs à 105°C (calcul)	% MS	*	0.4		*	0.6	*	0.4		
		laa al:				414				
		ınaı	ces ae	pollution s	ur	eiuat				
LSM68 : Carbone Organique par	mg/kg MS	*	72		*	55	*	<50		
oxydation (COT) sur éluat LS04Y : Chlorures sur éluat	mg/kg MS	*	17.2		*	30.4	*	11.1		
LSN71 : Fluorures sur éluat	mg/kg MS	*	7.31		*	20.1	*	6.73		
LS04Z: Sulfate (SO4) sur éluat	mg/kg MS	*	91.0		*	287	*	417		
LSM90 : Indice phénol sur éluat	mg/kg MS	*	<0.50		*	<0.50	*	<0.50		
LSWI90 : Indice phenor sur eluat	mg/kg wo					~0.50		~0.30		
			Meta	ux sur élua	at					
LSM04 : Arsenic (As) sur éluat	mg/kg MS	*	<0.20		*	<0.20	*	<0.20		
LSM05 : Baryum (Ba) sur éluat	mg/kg MS	*	0.72		*	3.04	*	0.62		
LSM11 : Chrome (Cr) sur éluat	mg/kg MS	*	<0.10		*	<0.10	*	<0.10		
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS	*	<0.20		*	<0.20	*	<0.20		
LSN26 : Molybdène (Mo) sur éluat	mg/kg MS	*	<0.010		*	0.036	*	0.052		
LSM20 : Nickel (Ni) sur éluat	mg/kg MS	*	<0.10		*	<0.10	*	<0.10		
LSM22 : Plomb (Pb) sur éluat	mg/kg MS	*	<0.10		*	0.18	*	0.22		
LSM35 : Zinc (Zn) sur éluat	mg/kg MS	*	<0.20		*	<0.20	*	0.23		
LS04W : Mercure (Hg) sur éluat	mg/kg MS	*	<0.001		*	<0.001	*	<0.001		
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS	*	<0.005		*	<0.005	*	<0.005		
LSN05 : Cadmium (Cd) sur éluat	mg/kg MS	*	<0.002		*	<0.002	*	<0.002		
LSN41 : Sélénium (Se) sur éluat	mg/kg MS	*	<0.01		*	<0.01	*	<0.01		

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

Date de réception : 19/03/2018

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		15	031 PM12 (0.3-0.7) SOL 5/03/2018 D/03/2018	032 PM13 (0.2-0.4) SOL 15/03/2018 19/03/2018 ministratif	18	033 PM13 (0.4-1.4) SOL 5/03/2018 0/03/2018	034 PM13 (1.4-2) SOL 15/03/2018 19/03/2018	035 PM13 (2-2.1) SOL 15/03/2018 19/03/2018	15	036 PM14 0.2-0.4) SOL /03/2018 0/03/2018
			Aui	minguam						
LSOIR : Mise en réserve de l'échantillon (en option)										
	P	rép	paration	Physico-C	hi	mique				
LS896 : Matière sèche	% P.B.	*	87.9		*	88.9			*	87.7
XXS07 : Refus Pondéral à 2 mm	% P.B.	*	15.3		*	19.3			*	28.4
XXS06 : Séchage à 40°C		*	-		*	-			*	-
			Indices	s de pollut	ior	1				
LS08X : Carbone Organique Total (COT)	mg/kg MS	*	3890		*	10600			*	7080
			I	Métaux						
XXS01 : Minéralisation eau régale - Bloc chauffant		*	-		*	-			*	-
LS863 : Antimoine (Sb)	mg/kg MS	*	<1.00		*	<1.00			*	<1.00
LS865 : Arsenic (As)	mg/kg MS	*	9.06		*	10.8			*	9.76
LS866 : Baryum (Ba)	mg/kg MS	*	267		*	92.0			*	86.1
LS870 : Cadmium (Cd)	mg/kg MS	*	<0.40		*	0.43			*	0.53
LS872 : Chrome (Cr)	mg/kg MS	*	15.6		*	21.4			*	22.8
LS874 : Cuivre (Cu)	mg/kg MS	*	30.9		*	48.2			*	33.1
LS880 : Molybdène (Mo)	mg/kg MS	*	<1.00		*	<1.00			*	<1.00
LS881 : Nickel (Ni)	mg/kg MS	*	9.77		*	17.7			*	17.8
LS883 : Plomb (Pb)	mg/kg MS	*	32.9		*	39.8			*	31.8
LS885 : Sélénium (Se)	mg/kg MS		<1.00			<1.00				<1.00
LS894 : Zinc (Zn)	mg/kg MS	*	54.7		*	56.9			*	58.6
LSA09 : Mercure (Hg)	mg/kg MS	*	0.19		*	0.27			*	0.13
			Hydroc	arbures to	tau	IX				
LS919: Hydrocarbures totaux (4 trans	ches)									
(C10-C40) Indice Hydrocarbures (C10-C40)	mg/kg MS	*	<20.5		*	<20.1			*	<15.0
HCT (nC10 - nC16) (Calcul)	mg/kg MS		<4.00			<4.00				<4.00
HCT (>nC16 - nC22) (Calcul)	mg/kg MS		<4.00			<4.00				<4.00
HCT (>nC22 - nC30) (Calcul)	mg/kg MS		<4.00			<4.00				<4.00
HCT (>nC30 - nC40) (Calcul)	mg/kg MS		<4.00			<4.00				<4.00

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

Date de réception : 19/03/2018

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		031 PM12 (0.3-0.7) SOL 15/03/2018 20/03/2018	032 PM13 (0.2-0.4) SOL 15/03/2018 19/03/2018	033 PM13 (0.4-1.4) SOL 15/03/2018 20/03/2018	034 PM13 (1.4-2) SOL 15/03/2018 19/03/2018	035 PM13 (2-2.1) SOL 15/03/2018 19/03/2018	036 PM14 (0.2-0.4) SOL 15/03/2018 20/03/2018
Hy	ydrocarbu	ıres Aroma	tiques Pol	ycycliques	(HAPs)		
LSA33 : Hydrocarbures Aromatiques I	Polycycliques						
(16 HAPs)		* .0.057		* .0.05			+ .0.05
Naphtalène	mg/kg MS	* <0.057		* <0.05			* <0.05
Acénaphthylène Acénaphtène	mg/kg MS mg/kg MS	* <0.064 * <0.074		* <0.055 * <0.064			* <0.05 * <0.05
Fluorène	mg/kg MS	* <0.064		* <0.055			* <0.05
Phénanthrène	mg/kg MS	* <0.075		* <0.065			* <0.05
Anthracène	mg/kg MS	* <0.073		* <0.063			* <0.05
Fluoranthène	mg/kg MS	* <0.064		* 0.087			* 0.063
Pyrène	mg/kg MS	* <0.064		* 0.084			* 0.085
Benzo-(a)-anthracène	mg/kg MS	* <0.063		* <0.066			* 0.11
Chrysène	mg/kg MS	* <0.083		* <0.086			* 0.12
Benzo(b)fluoranthène	mg/kg MS	* <0.073		* 0.098			* 0.087
Benzo(k)fluoranthène	mg/kg MS	* <0.075		* <0.078			* <0.05
Benzo(a)pyrène	mg/kg MS	* <0.063		* <0.066			* 0.086
Dibenzo(a,h)anthracène	mg/kg MS	* <0.071		* <0.074			* <0.05
Benzo(ghi)Pérylène	mg/kg MS	* <0.071		* <0.074			* <0.05
Indeno (1,2,3-cd) Pyrène	mg/kg MS	* <0.072		* <0.075			* <0.05
Somme des HAP	mg/kg MS	<0.083		0.27			0.55
	F	Polychlorol	biphényles	(PCBs)			
LSA42 : PCB congénères réglementai	res (7)						
PCB 28	mg/kg MS	* <0.01		* <0.01			* <0.01
PCB 52	mg/kg MS	* <0.01		* <0.01			* <0.01
PCB 101	mg/kg MS	* <0.02		* <0.01			* <0.01
PCB 118	mg/kg MS	* <0.02		* <0.01			* <0.01
PCB 138	mg/kg MS	* <0.02		* <0.01			* <0.01
PCB 153	mg/kg MS	* <0.02		* <0.01			* <0.01
PCB 180	mg/kg MS	* <0.02		* <0.01			* <0.01
SOMME PCB (7)	mg/kg MS	<0.02		<0.01			<0.01
		Comp	osés Volat	ils			
LS00D : Hydrocarbures volatils totaux	(MeC5 - C10)						
MeC5 - C8 inclus	mg/kg MS	<1.00		<1.00			<1.00
> C8 - C10 inclus	mg/kg MS	<1.00		<1.00			<1.00
Somme MeC5 - C10	mg/kg MS	<1.00		<1.00			<1.00
LS0Y1 : Dichlorométhane	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0XT : Chlorure de vinyle	mg/kg MS	* <0.02		* <0.02			* <0.02

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

Date de réception : 19/03/2018

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		031 PM12 (0.3-0.7) SOL 15/03/2018 20/03/2018	032 PM13 (0.2-0.4) SOL 15/03/2018 19/03/2018	033 PM13 (0.4-1.4) SOL 15/03/2018 20/03/2018	034 PM13 (1.4-2) SOL 15/03/2018 19/03/2018	035 PM13 (2-2.1) SOL 15/03/2018 19/03/2018	036 PM14 (0.2-0.4) SOL 15/03/2018 20/03/2018
		Comp	osés Volat	ils			
LS0YP : 1,1-Dichloroéthylène	mg/kg MS	* <0.10		* <0.10			* <0.10
LS0YQ : Trans-1,2-dichloroéthylène	mg/kg MS	* <0.10		* <0.10			* <0.10
LS0YR : cis 1,2-Dichloroéthylène	mg/kg MS	* <0.10		* <0.10			* <0.10
LS0YS : Chloroforme	mg/kg MS	* <0.02		* <0.02			* <0.02
LS0Y2: Tetrachlorométhane	mg/kg MS	* <0.02		* <0.02			* <0.02
LS0YN: 1,1-Dichloroéthane	mg/kg MS	* <0.10		* <0.10			* <0.10
LS0XY: 1,2-dichloroéthane	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0YL: 1,1,1-trichloroéthane	mg/kg MS	* <0.10		* <0.10			* <0.10
LS0YZ: 1,1,2-Trichloroéthane	mg/kg MS	* <0.20		* <0.20			* <0.20
LS0Y0 : Trichloroéthylène	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0XZ : Tetrachloroéthylène	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0Z1 : Bromochlorométhane	mg/kg MS	* <0.20		* <0.20			* <0.20
LS0Z0 : Dibromométhane	mg/kg MS	* <0.20		* <0.20			* <0.20
LS0XX: 1,2-Dibromoéthane	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0YY : Bromoforme (tribromométhane)	mg/kg MS	* <0.20		* <0.20			* <0.20
LS0Z2 : Bromodichlorométhane	mg/kg MS	* <0.20		* <0.20			* <0.20
LS0Z3 : Dibromochlorométhane	mg/kg MS	* <0.20		* <0.20			* <0.20
LS0XU : Benzène	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0Y4 : Toluène	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0XW : Ethylbenzène	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0Y6 : o-Xylène	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0Y5 : m+p-Xylène	mg/kg MS	* <0.05		* <0.05			* <0.05
LS0IK : Somme des BTEX	mg/kg MS	<0.0500		<0.0500			<0.0500
		Li	ixiviation				
LSA36 : Lixiviation 1x24 heures							
Lixiviation 1x24 heures		* Fait		* Fait			* Fait
Refus pondéral à 4 mm	% P.B.	* 46.2		* 34.7			* 51.4
XXS4D : Pesée échantillon lixiviation							
Volume	ml	* 240		* 240			* 240
Masse	g	* 23.9		* 24.2			* 23.5
	Α	nalyses im	imediates :	sur éluat			
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)		* 8.2		* 7.7			* 8.4
							_

www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

Date de réception : 19/03/2018

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		031 PM12 (0.3-0.7) SOL 15/03/2018 20/03/2018	032 PM13 (0.2-0.4) SOL 15/03/2018 19/03/2018	033 PM13 (0.4-1.4) SOL 15/03/2018 20/03/2018	034 PM13 (1.4-2) SOL 15/03/2018 19/03/2018	035 PM13 (2-2.1) SOL 15/03/2018 19/03/2018	036 PM14 (0.2-0.4) SOL 15/03/2018 20/03/2018
	Α	nalyses im	médiates :	sur éluat			
LSQ13 : Mesure du pH sur éluat		•					
Température de mesure du pH	°C	19		20			20
LSQ02 : Conductivité à 25°C sur éluat							
Conductivité corrigée automatiquement à 25°C	μS/cm	* 108		* 119			* 98
Température de mesure de la conductivité	°C	19.2		19.6			20.1
LSM46 : Résidu sec à 105°C (Fraction s	oluble) sur						
éluat Résidus secs à 105 °C	mg/kg MS	* 9390		* 7910			* 10400
Résidus secs à 105°C (calcul)	% MS	* 0.9		* 0.8			* 1.0
,			II4:	414			
		ndices de	pollution s	ur eluat			
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg MS	* 120		* 150			* 92
LS04Y : Chlorures sur éluat	mg/kg MS	* 30.0		* 27.9			* 19.9
LSN71 : Fluorures sur éluat	mg/kg MS	* 7.47		* 8.09			* <5.11
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS	* 209		* 253			* 107
LSM90 : Indice phénol sur éluat	mg/kg MS	* <0.51		* <0.50			* <0.51
		Móta	ux sur élua	at			
		IVICIA	ux Sui Giu	at 			
LSM04 : Arsenic (As) sur éluat	mg/kg MS	* <0.20		* <0.20			* <0.20
LSM05 : Baryum (Ba) sur éluat	mg/kg MS	* 1.51		* 1.05			* 0.62
LSM11 : Chrome (Cr) sur éluat	mg/kg MS	* <0.10		* <0.10			* <0.10
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS	* 0.41		* 0.40			* <0.20
LSN26 : Molybdène (Mo) sur éluat	mg/kg MS	* 0.020		* 0.020			* 0.026
LSM20 : Nickel (Ni) sur éluat	mg/kg MS	* <0.10		* <0.10			* <0.10
LSM22 : Plomb (Pb) sur éluat	mg/kg MS	* 0.28		* 0.32			* 0.14
LSM35 : Zinc (Zn) sur éluat	mg/kg MS	* 0.34		* <0.20			* <0.20
LS04W : Mercure (Hg) sur éluat	mg/kg MS	* <0.001		* 0.001			* <0.001
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS	* 0.014		* 0.010			* 0.010
LSN05 : Cadmium (Cd) sur éluat	mg/kg MS	* <0.002		* 0.002			* <0.002
LSN41 : Sélénium (Se) sur éluat	mg/kg MS	* <0.01		* <0.01			* <0.01

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

Date de réception : 19/03/2018

N° Echantillon		037	038	039	040	041	
Référence client :		PM14	PM14	PM15 (0-0.15)	PM15	PM15	
		(0.4-1.1)	(1.1-1.3)		(0.15-0.9)	(0.9-1.1)	
Matrice :		SOL	SOL	SOL	SOL	SOL	
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018	
Date de début d'analyse :		19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018	
		Ad	ministratif				
LSOIR : Mise en réserve de l'échantillon (en option)							
rechantinon (en option)	-	\\$ aa! a	Dhamiaa	Na ! !			
		Préparation	Physico-C				
LS896 : Matière sèche	% P.B.			* 94.4			
XXS07 : Refus Pondéral à 2 mm	% P.B.			* 19.2			
XXS06 : Séchage à 40°C				* -			
		Indice	s de pollut	ion			
LS08X : Carbone Organique Total (COT)	mg/kg MS			* 17700			
			Métaux				
XXS01 : Minéralisation eau régale -				* -			
Bloc chauffant							
LS863 : Antimoine (Sb)	mg/kg MS			* <1.00			
LS865 : Arsenic (As)	mg/kg MS			* 3.04			
LS866 : Baryum (Ba)	mg/kg MS			* 16.3			
LS870 : Cadmium (Cd)	mg/kg MS			* <0.40			
LS872 : Chrome (Cr)	mg/kg MS			* 9.17			
LS874 : Cuivre (Cu)	mg/kg MS			* 5.79			
LS880 : Molybdène (Mo)	mg/kg MS			* <1.00			
LS881 : Nickel (Ni)	mg/kg MS			* 5.82			
LS883 : Plomb (Pb)	mg/kg MS			* 5.52			
LS885 : Sélénium (Se)	mg/kg MS			<1.00			
LS894 : Zinc (Zn)	mg/kg MS			* 13.9			
LSA09 : Mercure (Hg)	mg/kg MS			* <0.10			
		Hydroc	arbures to	taux			
LS919 : Hydrocarbures totaux (4 tran	ches)						
(C10-C40) Indice Hydrocarbures (C10-C40)	mg/kg MS			* <15.0			
HCT (nC10 - nC16) (Calcul)	mg/kg MS			<4.00			
HCT (>nC16 - nC22) (Calcul)	mg/kg MS			<4.00			
HCT (>nC22 - nC30) (Calcul)	mg/kg MS			<4.00			
HCT (>nC30 - nC40) (Calcul)	mg/kg MS			<4.00			

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande : AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005 Version du : 26/03/2018

Date de réception : 19/03/2018

N° Echantillon	037	038	039	040	041
Référence client :	PM14 (0.4-1.1)	PM14 (1.1-1.3)	PM15 (0-0.15)	PM15 (0.15-0.9)	PM15 (0.9-1.1)
Matrice :	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018
Date de début d'analyse :	19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018
Lydroork					
	ures Aroma	aliques Po	iycyciiques	(HAPS)	
LSA33: Hydrocarbures Aromatiques Polycyclique	s				
(16 HAPs) Naphtalène mg/kg MS			* <0.05		
Acénaphthylène mg/kg MS			* <0.05		
Acénaphtène mg/kg MS			* <0.05		
Fluorène mg/kg MS			* <0.05		
Phénanthrène mg/kg MS			* <0.05		
Anthracène mg/kg MS			* <0.05		
Fluoranthène mg/kg MS			* <0.05		
Pyrène mg/kg MS			* <0.05		
Benzo-(a)-anthracène mg/kg MS			* <0.05		
Chrysène mg/kg MS			* <0.05		
Benzo(b)fluoranthène mg/kg MS			* <0.05		
Benzo(k)fluoranthène mg/kg MS			* <0.05		
Benzo(a)pyrène mg/kg MS			* <0.05		
Dibenzo(a,h)anthracène mg/kg MS			* <0.05		
Benzo(ghi)Pérylène mg/kg MS			* <0.05		
Indeno (1,2,3-cd) Pyrène mg/kg MS			* <0.05		
Somme des HAP mg/kg MS			<0.05		
	Polychloro	biphényles	s (PCBs)		
LSA42 : PCB congénères réglementaires (7)	•	, , ,			
PCB 28 mg/kg MS			* <0.01		
PCB 52 mg/kg MS			* <0.01		
PCB 101 mg/kg MS			* <0.01		
PCB 118 mg/kg MS			* <0.01		
PCB 138 mg/kg MS			* <0.01		
PCB 153 mg/kg MS			* <0.01		
PCB 180 mg/kg MS			* <0.01		
SOMME PCB (7) mg/kg MS			<0.01		
	Comp	osés Vola	tils		
LS00D : Hydrocarbures volatils totaux (MeC5 - C1	0)				
MeC5 - C8 inclus mg/kg MS	,		<1.00		
> C8 - C10 inclus mg/kg MS			<1.00		

<1.00

<0.05

<0.02

mg/kg MS

mg/kg MS

mg/kg MS

Somme MeC5 - C10

LS0Y1: Dichlorométhane

LS0XT: Chlorure de vinyle

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

10.4

RAPPORT D'ANALYSE

Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

Version du : 26/03/2018 Date de réception : 19/03/2018

N° Echantillon		037	038	039	040	041			
Référence client :		PM14	PM14	PM15 (0-0.15)	PM15	PM15			
		(0.4-1.1)	(1.1-1.3)		(0.15-0.9)	(0.9-1.1)			
Matrice :		SOL	SOL	SOL	SOL	SOL			
Date de prélèvement :		15/03/2018	15/03/2018	15/03/2018	15/03/2018	15/03/2018			
Date de début d'analyse :		19/03/2018	19/03/2018	20/03/2018	19/03/2018	19/03/2018			
Composés Volatils									
LS0YP : 1,1-Dichloroéthylène	mg/kg MS			* <0.10					
LS0YQ : Trans-1,2-dichloroéthylène	mg/kg MS			* <0.10					
LSOYR : cis 1,2-Dichloroéthylène	mg/kg MS			* <0.10					
LS0YS : Chloroforme	mg/kg MS			* <0.02					
LS0Y2: Tetrachlorométhane	mg/kg MS			* <0.02					
LS0YN: 1,1-Dichloroéthane	mg/kg MS			* <0.10					
LS0XY: 1,2-dichloroéthane	mg/kg MS			* <0.05					
LS0YL: 1,1,1-trichloroéthane	mg/kg MS			* <0.10					
LS0YZ: 1,1,2-Trichloroéthane	mg/kg MS			* <0.20					
LS0Y0 : Trichloroéthylène	mg/kg MS			* <0.05					
LS0XZ : Tetrachloroéthylène	mg/kg MS			* <0.05					
LS0Z1: Bromochlorométhane	mg/kg MS			* <0.20					
LS0Z0 : Dibromométhane	mg/kg MS			* <0.20					
LS0XX: 1,2-Dibromoéthane	mg/kg MS			* <0.05					
LS0YY : Bromoforme (tribromométhane)	mg/kg MS			* <0.20					
LS0Z2 : Bromodichlorométhane	mg/kg MS			* <0.20					
LS0Z3 : Dibromochlorométhane	mg/kg MS			* <0.20					
LS0XU : Benzène	mg/kg MS			* <0.05					
LS0Y4 : Toluène	mg/kg MS			* <0.05					
LS0XW : Ethylbenzène	mg/kg MS			* <0.05					
LS0Y6 : o-Xylène	mg/kg MS			* <0.05					
LS0Y5 : m+p-Xylène	mg/kg MS			* <0.05					
LS0IK : Somme des BTEX	mg/kg MS			<0.0500					
		Li	xiviation						
LSA36 : Lixiviation 1x24 heures									
Lixiviation 1x24 heures				* Fait					
Refus pondéral à 4 mm	% P.B.			* 34.6					
XXS4D : Pesée échantillon lixiviation									
Volume	ml			* 240					
Masse	g			* 24.00					
	Α	nalyses im	médiates	sur éluat					
LSQ13 : Mesure du pH sur éluat									

pH (Potentiel d'Hydrogène)

20/03/2018

19/03/2018

19/03/2018

RAPPORT D'ANALYSE

19/03/2018

Analyses immédiates sur éluat

Indices de pollution sur éluat

Dossier N°: 18E026531

Version du : 26/03/2018 N° de rapport d'analyse : AR-18-LK-037805-01 Date de réception : 19/03/2018

Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Date de début d'analyse :

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3ELY.18.0005

037 038 039 040 041 N° Echantillon PM15 (0-0.15) PM15 PM14 **PM14** PM15 Référence client : (0.4-1.1)(1.1-1.3)(0.15-0.9)(0.9-1.1)Matrice: SOL SOL SOL SOL SOL Date de prélèvement : 15/03/2018 15/03/2018 15/03/2018 15/03/2018 15/03/2018

19/03/2018

LSQ13: Mesure du pH sur éluat			
Température de mesure du pH	°C		
LSQ02 : Conductivité à 25°C sur éluat			
Conductivité corrigée automatiquement à 25°C	μS/cm		*
Température de mesure de la conductivité	°C		
LSM46 : Résidu sec à 105°C (Fraction s	oluble) sur		
éluat			
Résidus secs à 105 °C	mg/kg MS		*
Résidus secs à 105°C (calcul)	% MS		*

LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg MS		*	<50
LS04Y: Chlorures sur éluat	mg/kg MS		*	<10.0
LSN71 : Fluorures sur éluat	mg/kg MS		*	<5.00
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS		*	<50.0
LSM90 : Indice phénol sur éluat	mg/kg MS		*	<0.50

LS04Z : Sullate (SO4) Sur eluat	Hig/kg WS				\50.0	
LSM90 : Indice phénol sur éluat	mg/kg MS			*	<0.50	
		Méta	ux sur élua	t		
LSM04 : Arsenic (As) sur éluat	mg/kg MS			*	<0.20	
LSM05 : Baryum (Ba) sur éluat	mg/kg MS			*	<0.10	
LSM11 : Chrome (Cr) sur éluat	mg/kg MS			*	<0.10	
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS			*	<0.20	
_SN26 : Molybdène (Mo) sur éluat	mg/kg MS			*	0.175	
SM20 : Nickel (Ni) sur éluat	mg/kg MS			*	<0.10	
.SM22 : Plomb (Pb) sur éluat	mg/kg MS			*	<0.10	
SM35 : Zinc (Zn) sur éluat	mg/kg MS			*	<0.20	
LS04W : Mercure (Hg) sur éluat	mg/kg MS			*	<0.001	
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS			*	<0.005	
LSN05 : Cadmium (Cd) sur éluat	mg/kg MS			*	<0.002	
LSN41 : Sélénium (Se) sur éluat	mg/kg MS			*	<0.01	
D 4/15-1/ /ND 4/15-1/						

D : détecté / ND : non détecté

ACCREDITATION

N° 1- 1488 Site de saverne

www.cofrac.fr

RAPPORT D'ANALYSE

Version du : 26/03/2018 Dossier N°: 18E026531

N° de rapport d'analyse : AR-18-LK-037805-01 Date de réception : 19/03/2018 Référence Dossier : N° Projet : 3ELY180005

Nom Projet: 3ELY180005

Nom Commande: AF.3ELY.18.0005 Référence Commande : AF.3FI Y.18.0005

Observations	N° Ech	Réf client
Fraction soluble : Le trouble résiduel observé après filtration du lixiviat peut entraîner une sur-estimation du résultat.	(021) (022) (027) (031) (033) (036)	PM7 (1.3-2) / PM8 (0.15-0.3) / PM10 (0.1-0.9) / PM12 (0.3-0.7) / PM13 (0.4-1.4) / PM14 (0.2-0.4) /
Lixiviation : Conformément aux exigences de la norme NF EN 12457-2, votre échantillonnage n'a pas permis de fournir les 2kg requis au laboratoire.	(003) (006) (009) (012) (014) (017) (021) (022) (025) (027) (028) (031) (033) (036) (039)	PM1 (1-1.7) / PM2 (0.6-1.3) / PM3 (1.6-2) / PM4 (1.2-2) / PM5 (0.2-1.2) / PM6 (0.1-0.4) / PM7 (1.3-2) / PM8 (0.15-0.3) / PM9 (0.9-1.1) / PM10 (0.1-0.9) / PM11 (0.1-0.8) / PM12 (0.3-0.7) / PM13 (0.4-1.4) / PM14 (0.2-0.4) / PM15 (0-0.15) /

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 36 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de tracabilité sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des prélèvements et des analyses terrains et/ou des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Coordinateur Projets Clients

Annexe technique

N° de rapport d'analyse :AR-18-LK-037805-01 Dossier N°: 18E026531

Emetteur: Commande EOL: 006-10514-327242

Nom projet: 3ELY180005 Référence commande : AF.3ELY.18.0005

Sol

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS00D	Hydrocarbures volatils totaux (MeC5 - C10)	HS - GC/MS - NF EN ISO 22155			Eurofins Analyse pour l'Environnement
	MeC5 - C8 inclus		1	mg/kg MS	France
	> C8 - C10 inclus		1	mg/kg MS	
	Somme MeC5 - C10			mg/kg MS	
LS04W	Mercure (Hg) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.001	mg/kg MS	
LS04Y	Chlorures sur éluat	Spectrophotométrie (UV/VIS) [Spectrométrie visible automatisée] - NF EN 16192 - NF ISO 15923-1	10	mg/kg MS	
LS04Z	Sulfate (SO4) sur éluat		50	mg/kg MS	
LS08X	Carbone Organique Total (COT)	Combustion [sèche] - NF ISO 10694	1000	mg/kg MS	
LS0IK	Somme des BTEX	Calcul - Calcul		mg/kg MS	
LS0IR	Mise en réserve de l'échantillon (en option)				
LS0XT	Chlorure de vinyle	HS - GC/MS [Extraction méthanolique] - NF EN ISO 22155 (sol) ou Méthode interne (boue,séd	0.02	mg/kg MS	
LS0XU	Benzène		0.05	mg/kg MS	
LS0XW	Ethylbenzène		0.05	mg/kg MS	
LS0XX	1,2-Dibromoéthane		0.05	mg/kg MS	
LS0XY	1,2-dichloroéthane		0.05	mg/kg MS	
LS0XZ	Tetrachloroéthylène		0.05	mg/kg MS	
LS0Y0	Trichloroéthylène		0.05	mg/kg MS	
LS0Y1	Dichlorométhane		0.05	mg/kg MS	
LS0Y2	Tetrachlorométhane		0.02	mg/kg MS	
LS0Y4	Toluène		0.05	mg/kg MS	
LS0Y5	m+p-Xylène		0.05	mg/kg MS	
LS0Y6	o-Xylène		0.05	mg/kg MS	
LS0YL	1,1,1-trichloroéthane		0.1	mg/kg MS	
LS0YN	1,1-Dichloroéthane		0.1	mg/kg MS	
LS0YP	1,1-Dichloroéthylène		0.1	mg/kg MS	
LS0YQ	Trans-1,2-dichloroéthylène		0.1	mg/kg MS	
LS0YR	cis 1,2-Dichloroéthylène		0.1	mg/kg MS	
LS0YS	Chloroforme		0.02	mg/kg MS	
LS0YY	Bromoforme (tribromométhane)		0.2	mg/kg MS	
LS0YZ	1,1,2-Trichloroéthane		0.2	mg/kg MS	
LS0Z0	Dibromométhane		0.2	mg/kg MS	
LS0Z1	Bromochlorométhane		0.2	mg/kg MS	
LS0Z2	Bromodichlorométhane		0.2	mg/kg MS	
LS0Z3	Dibromochlorométhane		0.2	mg/kg MS	
LS863	Antimoine (Sb)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - NF EN 13346 Méthode B (Sol)	1	mg/kg MS	
LS865	Arsenic (As)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - NF EN 13346 Méthode B	1	mg/kg MS	
LS866	Baryum (Ba)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - NF EN 13346 Méthode B (Sol)	1	mg/kg MS	
LS870	Cadmium (Cd)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - NF EN 13346 Méthode B	0.4	mg/kg MS	
LS872	Chrome (Cr)		5	mg/kg MS	
LS874	Cuivre (Cu)	[5	mg/kg MS	
LS880	Molybdène (Mo)		1	mg/kg MS	

Annexe technique

N° de rapport d'analyse :AR-18-LK-037805-01 Dossier N°: 18E026531

Emetteur: Commande EOL: 006-10514-327242

Nom projet: 3ELY180005 Référence commande : AF.3ELY.18.0005

Sol

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site
LS881	Nickel (Ni)	-	1	mg/kg MS	de :
LS883	Plomb (Pb)	1	5	mg/kg MS	1
LS885	Sélénium (Se)	1	1	mg/kg MS	1
LS894	Zinc (Zn)	1	5	mg/kg MS	1
LS896	Matière sèche	Gravimétrie - NF ISO 11465	0.1	% P.B.	†
LS919	Hydrocarbures totaux (4 tranches) (C10-C40)	GC/FID [Extraction Hexane / Acétone] - NF EN ISO			
	Indice Hydrocarbures (C10-C40)	16703 (Sols) - NF EN 14039 (Boue, Sédiments)	15	mg/kg MS	
	HCT (nC10 - nC16) (Calcul)			mg/kg MS	
	HCT (>nC16 - nC22) (Calcul)			mg/kg MS	
	HCT (>nC22 - nC30) (Calcul)			mg/kg MS	
	HCT (>nC30 - nC40) (Calcul)			mg/kg MS	
LSA09	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) [Minéralisation à l'eau régale] - NF EN 13346 Méthode B (Sol) - NF ISO 16772 (Sol) - Méthode interne	0.1	mg/kg MS	
LSA33	Hydrocarbures Aromatiques Polycycliques (16 HAPs)	GC/MS/MS [Extraction Hexane / Acétone] - NF ISO 18287 (Sols) - XP X 33-012 (boue, sédiment)			
	Naphtalène	(,	0.05	mg/kg MS	
	Acénaphthylène		0.05	mg/kg MS	
	Acénaphtène		0.05	mg/kg MS	
	Fluorène		0.05	mg/kg MS	
	Phénanthrène		0.05	mg/kg MS	
	Anthracène		0.05	mg/kg MS	
	Fluoranthène		0.05	mg/kg MS	
	Pyrène		0.05	mg/kg MS	
	Benzo-(a)-anthracène		0.05	mg/kg MS	
	Chrysène		0.05	mg/kg MS	
	Benzo(b)fluoranthène		0.05	mg/kg MS	
	Benzo(k)fluoranthène		0.05	mg/kg MS	
	Benzo(a)pyrène		0.05	mg/kg MS	
	Dibenzo(a,h)anthracène		0.05	mg/kg MS	
	Benzo(ghi)Pérylène		0.05	mg/kg MS	
	Indeno (1,2,3-cd) Pyrène		0.05	mg/kg MS	
	Somme des HAP			mg/kg MS	
LSA36	Lixiviation 1x24 heures	Lixiviation [Ratio L/S = 10 l/kg - Broyage par concasseur à mâchoires] - NF EN 12457-2			
	Lixiviation 1x24 heures				
	Refus pondéral à 4 mm		0.1	% P.B.	
LSA42	PCB congénères réglementaires (7)	GC/MS/MS [Extraction Hexane / Acétone] - NF EN 16167 (Sols) - XP X 33-012 (boue, sédiment)			
	PCB 28		0.01	mg/kg MS	
	PCB 52		0.01	mg/kg MS	
	PCB 101		0.01	mg/kg MS	
	PCB 118		0.01	mg/kg MS	
	PCB 138		0.01	mg/kg MS	
	PCB 153		0.01	mg/kg MS	
	PCB 180		0.01	mg/kg MS	
	SOMME PCB (7)			mg/kg MS	

Annexe technique

Dossier N°: 18E026531 N° de rapport d'analyse :AR-18-LK-037805-01

Emetteur: Commande EOL: 006-10514-327242

Nom projet : 3ELY180005 Référence commande : AF.3ELY.18.0005

Sol

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LSM04	Arsenic (As) sur éluat	ICP/AES - NF EN ISO 11885 / NF EN 16192	0.2	mg/kg MS	1
LSM05	Baryum (Ba) sur éluat		0.1	mg/kg MS	1
LSM11	Chrome (Cr) sur éluat		0.1	mg/kg MS	1
LSM13	Cuivre (Cu) sur éluat		0.2	mg/kg MS	1
LSM20	Nickel (Ni) sur éluat		0.1	mg/kg MS	1
LSM22	Plomb (Pb) sur éluat		0.1	mg/kg MS	1
LSM35	Zinc (Zn) sur éluat		0.2	mg/kg MS	1
LSM46	Résidu sec à 105°C (Fraction soluble) sur éluat Résidus secs à 105°C Résidus secs à 105°C (calcul)	Gravimétrie - NF T 90-029 / NF EN 16192	2000 0.2	mg/kg MS % MS	
LSM68	Carbone Organique par oxydation (COT) sur éluat	Spectrophotométrie (IR) [Oxydation à chaud en milieu acide] - NF EN 16192 - NF EN 1484 - Adaptée de NF EN 1484 (hors Sol)	50	mg/kg MS	
LSM90	Indice phénol sur éluat	Flux continu - NF EN ISO 14402 (adaptée sur sédiment,boue) - NF EN 16192	0.5	mg/kg MS	
LSM97	Antimoine (Sb) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.005	mg/kg MS	1
LSN05	Cadmium (Cd) sur éluat		0.002	mg/kg MS	1
LSN26	Molybdène (Mo) sur éluat		0.01	mg/kg MS	1
LSN41	Sélénium (Se) sur éluat		0.01	mg/kg MS	1
LSN71	Fluorures sur éluat	Electrométrie [Potentiometrie] - NF T 90-004 (adaptée sur sédiment,boue) - NF EN 16192	5	mg/kg MS	
LSQ02	Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité	Potentiométrie [Méthode à la sonde] - NF EN 27888 / NF EN 16192		μS/cm °C	
LSQ13	Mesure du pH sur éluat pH (Potentiel d'Hydrogène) Température de mesure du pH	Potentiométrie - NF EN ISO 10523 / NF EN 16192		°C	
XXS01	Minéralisation eau régale - Bloc chauffant	Digestion acide - NF EN 13346 Méthode B]
XXS06	Séchage à 40°C	Séchage - NF ISO 11464			1
XXS07	Refus Pondéral à 2 mm	Gravimétrie - NF ISO 11464	1	% P.B.	1
XXS4D	Pesée échantillon lixiviation Volume Masse	Gravimétrie -		ml g	

Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env

SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

N° de rapport d'analyse : AR-18-LK-037805-01 Dossier N°: 18E026531

Emetteur: Commande EOL: 006-10514-327242

Nom projet : N° Projet : 3ELY180005 Référence commande : AF.3ELY.18.0005

3ELY180005

Nom Commande: AF.3ELY.18.0005

Sol

301				
Référence Eurofins	Référence Client	Date&Heure Prélèvement	Code-barre	Nom flacon
18E026531-001	PM1 (0.1-0.3)	15/03/2018	V05BH8900	374mL verre (sol)
18E026531-002	PM1 (0.3-1)	15/03/2018	V05BH9463	374mL verre (sol)
18E026531-003	PM1 (1-1.7)	15/03/2018	V05BH9455	374mL verre (sol)
18E026531-004	PM2 (0.15-0.3)	15/03/2018	V05BH9446	374mL verre (sol)
18E026531-005	PM2 (0.3-0.6)	15/03/2018	V05BH9444	374mL verre (sol)
18E026531-006	PM2 (0.6-1.3)	15/03/2018	V05BH8906	374mL verre (sol)
18E026531-007	PM3 (0-0.2)	15/03/2018	V05BH9215	374mL verre (sol)
18E026531-008	PM3 (0.3-1.6)	15/03/2018	V05BH9206	374mL verre (sol)
18E026531-009	PM3 (1.6-2)	15/03/2018	V05BH9453	374mL verre (sol)
18E026531-010	PM4 (0.1-0.2)	15/03/2018	V05BH9213	374mL verre (sol)
18E026531-011	PM4 (0.2-1.2)	15/03/2018	V05BH9205	374mL verre (sol)
18E026531-012	PM4 (1.2-2)	15/03/2018	V05BH9210	374mL verre (sol)
18E026531-013	PM5 (0.1-0.2)	15/03/2018	V05BH9212	374mL verre (sol)
18E026531-014	PM5 (0.2-1.2)	15/03/2018	V05BH9202	374mL verre (sol)
18E026531-015	PM5 (1.2-1.6)	15/03/2018	V05BH9201	374mL verre (sol)
18E026531-016	PM5 (1.6-2)	15/03/2018	V05BH9211	374mL verre (sol)
18E026531-017	PM6 (0.1-0.4)	15/03/2018	V05BH9208	374mL verre (sol)
18E026531-018	PM6 (0.4-1)	15/03/2018	V05BH9207	374mL verre (sol)
18E026531-019	PM7 (0.15-0.3)	15/03/2018	V05BH8899	374mL verre (sol)
18E026531-020	PM7 (0.3-1.3)	15/03/2018	V05BH8902	374mL verre (sol)
18E026531-021	PM7 (1.3-2)	15/03/2018	V05BH8901	374mL verre (sol)
18E026531-022	PM8 (0.15-0.3)	15/03/2018	V05BH8895	374mL verre (sol)
18E026531-023	PM8 (0.3-0.8)	15/03/2018	V05BH8896	374mL verre (sol)
18E026531-024	PM9 (0.1-0.9)	15/03/2018	V05BH9462	374mL verre (sol)
18E026531-025	PM9 (0.9-1.1)	15/03/2018	V05BH9445	374mL verre (sol)
18E026531-026	PM10 (0.05-0.1)	15/03/2018	V05BH8466	374mL verre (sol)
18E026531-027	PM10 (0.1-0.9)	15/03/2018	V05BH8905	374mL verre (sol)
18E026531-028	PM11 (0.1-0.8)	15/03/2018	V05BH8458	374mL verre (sol)
18E026531-029	PM12 (0-0.15)	15/03/2018	V05BH8894	374mL verre (sol)
18E026531-030	PM12 (0.15-0.3)	15/03/2018	V05BH8904	374mL verre (sol)
18E026531-031	PM12 (0.3-0.7)	15/03/2018	V05BH9454	374mL verre (sol)
18E026531-032	PM13 (0.2-0.4)	15/03/2018	V05BH9214	374mL verre (sol)
18E026531-033	PM13 (0.4-1.4)	15/03/2018	V05BH9199	374mL verre (sol)
18E026531-034	PM13 (1.4-2)	15/03/2018	V05BH9204	374mL verre (sol)
18E026531-035	PM13 (2-2.1)	15/03/2018	V05BH9209	374mL verre (sol)
18E026531-036	PM14 (0.2-0.4)	15/03/2018	V05BH8469	374mL verre (sol)
18E026531-037	PM14 (0.4-1.1)	15/03/2018	V05BH8461	374mL verre (sol)
18E026531-038	PM14 (1.1-1.3)	15/03/2018	V05BH8464	374mL verre (sol)
18E026531-039	PM15 (0-0.15)	15/03/2018	V05BH9203	374mL verre (sol)
18E026531-040	PM15 (0.15-0.9)	15/03/2018	V05BH9198	374mL verre (sol)
18E026531-041	PM15 (0.9-1.1)	15/03/2018	V05BH9200	374mL verre (sol)

TERRITOIRE(S) D'EXIGENCE