

HYDROGEOTECHNIQUE SUD EST

INGENIERIE GEOTECHNIQUE, GEOLOGIQUE, HYDROGEOLOGIQUE ET HYDROLOGIQUE APPLIQUEE AUX BATIMENTS, GENIE-CIVIL, INFRASTRUCTURES ET A L'ENVIRONNEMENT. SONDAGES – ESSAIS DE SOLS IN SITU ET EN LABORATOIRE

MÉTROPOLE AIX MARSEILLE PROVENCE

Construction de voiries pour l'extension de la ZA des Plaines Sud.

SAINT CHAMAS (13)

RAPPORT D'ÉTUDE GÉOTECHNIQUE

ÉTAPE 1 : Missions G1 + G2_{AVP}

DOSSIER N° C.18.50204 GARDANNE, LE 25/06/2019	
Sont annexés à ce rapport : * le plan d'implantation des sondages, * le cahier des résultats des investigations, * le rappel des missions géotechniques.	Chargé d'étude : Geoffrey CADRAN Contrôle interne : Alexandre GARDAS

Le présent rapport et ses annexes constituent un tout indissociable

Table des matières

1.1.MISSIONS	
1.2.RÉFÉRENTIELS	
1.3.DESCRIPTION DU PROJET	
2.CONTEXTE SITOLOGIQUE, GÉOLOGIQUE, HYDROGÉOLOGIQUE ET SISMIQI	
GÉNÉRAL – MISSION G1	5
2.1.SITOLOGIE	
2.2.GÉOLOGIE	6
2.3.HYDROGEOLOGIE	7
2.4.CARTE D'ALÉAS	7
3.PROGRAMME DES PRESTATIONS GÉOTECHNIQUES SPÉCIFIQUES MIS EN	
ŒUVRE – MISSION G2AVP	8 Q
3.2.IMPLANTATION DES SONDAGES	
4.CARACTÉRISTIQUES GÉOLOGIQUES, GÉOTECHNIQUES ET	0
4.CARACTERISTIQUES GEOLOGIQUES, GEOTECHNIQUES ET HYDROGÉOLOGIQUES APPREHENDÉES PAR LES INVESTIGATIONS SPÉCIFIQU	JES
- MISSION G2AVP	9
4.1.LITHOLOGIE MISE EN ÉVIDENCE	
4.2.CARACTÉRISTIQUES MECANIQUES	
4.3.CARACTÉRISTIQUES HYDROGÉOLOGIQUES	
4.4.RÉSULTATS DES ESSAIS DE PERMÉABILITÉ DE TYPE LEFRANC	10
4.5.SISMICITÉ	11
4.6.ALÉAS GEOTECHNIQUES	11
La géologie	
L'hydrogéologie	
La nature des matériauxL'environnement	
5.PRINCIPES GÉNÉRAUX DES TERRASSEMENTS ET DE DRAINAGE POUR LES	
VOIRIES	13
5.2.STABILITÉ ET PROTECTION DES TALUS	
5.3.DISPOSITIFS D'ASSAINISSEMENT ET DE DRAINAGE	
6.ETUDE VOIRIES LOURDES ET LEGERES	
6.2.PST – ARASE – COUCHE DE FORME	
6.3.STRUCTURE DE CHAUSSÉE	
6.4.SUGGESTIONS DE RÉALISATION	
7.ALEAS SUBSISTANTS A L'ETUDE	
ANNEXES	20

1. INTRODUCTION

1.1. MISSIONS

À la demande et pour le compte de la Métropole Aix Marseille Provence, la Direction Régionale PACA du Bureau d'Études HYDROGÉOTECHNIQUE SUD-EST a été chargée de la réalisation de l'ÉTAPE 1 (missions G1 et G2AVP) dans le cadre des études géotechniques préalables à la construction de voiries pour l'extension de la Zone Artisanale des Plaines Sud, sur la commune de SAINT CHAMAS (13).

Cette étude s'inscrit dans le cadre de la norme NF P 94-500 des missions type d'ingénierie géotechnique de l'AFNOR-USG (en date de novembre 2013), qui suivent les étapes d'élaboration et de réalisation de tout projet, à savoir :

> ÉTAPE 1 : études géotechniques préalables (G1) :

- G1_{ES}: étude de site,

- G1_{PGC}: étude des principes généraux de construction,

ÉTAPE 2 : étude géotechnique de conception (G2) :

- G2_{AVP}: Phase Avant Projet,

Ces missions se terminent à la remise du présent rapport.

Elles s'appuient sur des prestations d'investigations géotechniques proposées et réalisées par notre société.

Cette étude a été réalisée par **Geoffrey CADRAN** Ingénieur Géotechnicien, avec le contrôle interne de **Alexandre GARDAS**, Ingénieur Géotechnicien, directeur de l'agence Sud Est.

1.2. RÉFÉRENTIELS

Les référentiels utilisés dans le cadre de cette étude sont les suivants :

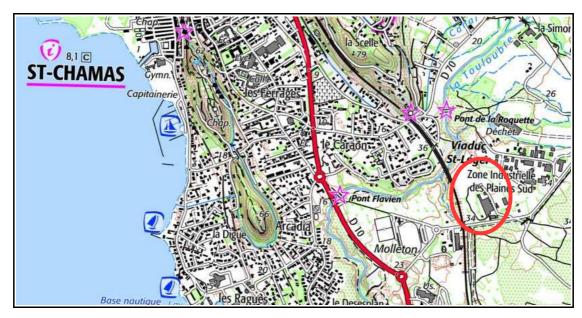
Décret n°2010-1254 du 22 octobre 2010 relatif la prévention du risque sismique.

> NF P 11-300 (Septembre 1992) - GTR 92 :

- exécution des terrassements,
- classification des matériaux utilisables dans la construction des remblais et des couches de forme d'infrastructures routières.

1.3. <u>DESCRIPTION DU PROJET</u>

Aucun document ne nous a été fourni.


Le projet consiste en la réalisation de voiries pour la désertes des futurs lots qui seront viabilisés par la suite.

හශ හශ හශ හශ

2. CONTEXTE SITOLOGIQUE, GÉOLOGIQUE, HYDROGÉOLOGIQUE ET SISMIQUE GÉNÉRAL – MISSION G1

2.1. SITOLOGIE

Le secteur d'étude correspond à un terrain situé en bordure de la départemental 15.

Source www.geoportail.fr

La parcelle, objet de l'étude correspond à un anciennne zone industrielle où des bâtiments et hangars sont présents en limite Sud. La majorité de la surface de la parcelle est enherbée.

La topographie est a priori globalement plane (absence de plan topographique).

2.2. GÉOLOGIE

Nous avons exploité l'extrait de la carte géologique de MARTIGUES au 1/50 000ème. Il en ressort que le site s'insère, au sein des calcaires du Barrémien (n4U). On s'attend tout de même à rencontrer de possibles remblais ou des formations limoneuses.

Source: infoterre.brgm.fr

2.3. HYDROGEOLOGIE

Compte tenu du contexte sitologique et géologique, il est probable que des circulations d'eau puissent s'établir :

- sous forme de nappes de stagnation dans les colluvions,
- à la faveur de la perméabilité des terrains,
- à la faveur de la fracturation du substratum calcaire.

2.4. CARTE D'ALÉAS

Le tableau suivant reprend les données d'aléas et de risques du site étudié.

Risque étudié	Site source	Aléas
Atlas zones inondables	www.georisques.gouv.fr	Non localisé au sein d'un territoire à risque important d'innondation
Retrait-gonflement	www.georisques.gouv.fr	Faible Pas de PPRN
Mouvements de terrains	www.georisques.gouv.fr	Non concerné Pas de PPRN
Cavités	www.georisques.gouv.fr	Non concerné Pas de PPRN
Séismes	www.georisques.gouv.fr	Niveau 3

L'atlas des zones inondables apporte la connaissance de l'emprise maximale des zones potentiellement inondables dans lesquelles les crues exceptionnelles peuvent se produire. Il s'agit d'un document <u>informatif</u> officiel, n'ayant pas de valeur réglementaire directe, contrairement à un Plan de Prévention des Risques d'Inondation (PPRI).

නශ නශ නශ නශ

3. PROGRAMME DES PRESTATIONS GÉOTECHNIQUES SPÉCIFIQUES MIS EN ŒUVRE – MISSION G2_{AVP}

3.1. INVESTIGATIONS RÉALISÉES

Nous avons réalisé en Février et en mai 2019 les investigations suivantes :

12 essais au pénétromètre dynamique lourd, notés PD1 à PD12, au refus du battage.

Ces essais ont été conduits aux profondeurs indiquées dans le tableau cidessous :

Sondage	PD1	PD2	PD3	PD4	PD5	PD6	PD7	PD8	PD9	PD10	PD11	PD12
Profondeur (m)	0,2	0,2	0,4	0,4	0,4	0,2	0,8	0,2	0,2	0,2	0,2	0,2
Motif arrêt						Re	fus					

- Des sondages à la pelle mécanique étaient prévus, mais pour des raisons archéologiques ces sondages n'ont pu être réalisés.
- 1 sondage carotté noté SC1 à 9m de profondeur réalisé au carottier rotatif.
 Ce sondage a été équipé en piézomètre muni d'une tête de protection hors-sol

3.2. IMPLANTATION DES SONDAGES

Le plan d'implantation des sondages est présenté en annexe 1 à ce rapport. Les profondeurs indiquées sur les sondages ont été prises par rapport à la tête du sondage.

१००४ १००४ १००४ १००४

4. CARACTÉRISTIQUES GÉOLOGIQUES, GÉOTECHNIQUES ET HYDROGÉOLOGIQUES APPREHENDÉES PAR LES INVESTIGATIONS SPÉCIFIQUES – MISSION G2_{AVP}

4.1. LITHOLOGIE MISE EN ÉVIDENCE

Sur la base du seul sondage carotté, la coupe lithologique est la suivante :

- Couche C1: Limon marron foncé à racines à quelques cailloutis. Cette couche a été rencontrée jusque 0,25m de profondeur au droit de SC1
- <u>Couche C2</u>: Calcaire blanc/gris, cette couche peut être subdivisée en deux sous-couches:
 - Couche C2-1: Calcaire déstructuré/fragmenté à blocs reconnue jusque 2,0m de profondeur,
 - Couche C2-2: Calcaire à veine de calcite et vacuoles reconnu jusqu'à la base de notre sondage SC1, soit 9m de profondeur.

Cette couche a probablement provoqué le refus sur nos sondages au pénétromètre dynamique lourd.

4.2. CARACTÉRISTIQUES MECANIQUES

Nous avons réalisé des essais au pénétromètre dynamique lourd, ces essais ne permettent pas d'identifier les faciès lithologique mais simplement d'en apprécier leur caractéristiques mécanique. Nous interprétons donc les essais pénétromètrique en tant que marqueur de la compacité.

	Lithologie	Qd	Commentaire caractéristiques
Couche C1	Limon sableux marron	8MPa <qd<10mpa< th=""><th>Elevées</th></qd<10mpa<>	Elevées
Couche C2	Calcaire +/- fracturé blanc	qd>10 MPa*	Très élevées

^{*} Attention, il peut s'agir de faux refus, la position du toit calcaire devra être précisé par la réalisation de sondages à la pelle mécanique.

4.3. CARACTÉRISTIQUES HYDROGÉOLOGIQUES

Lors de notre intervention, en Février et Mai 2019, par temps sec, aucun niveau d'eau n'a été noté au droit des sondages effectués. L'équipement piézométrique mis en place dans SC1 n'a pas relevé de niveau d'eau à la suite du forage.

Nous rappelons que ces observations restent ponctuelles et instantanées et qu'elles ne permettent pas de préciser l'ensemble des circulations superficielles et souterraines qui peuvent se produire en période pluvieuse.

Seul un suivi piézométrique sur 1 an permet d'apprécier les éventuelles battement d'une nappe.

4.4. RÉSULTATS DES ESSAIS DE PERMÉABILITÉ DE TYPE LEFRANC

Nous avons effectué deux essais d'infiltration de type Lefranc en forage à ciel ouvert. Ces essais ont été conduits comme suit :

	Poche	Nature	Perméabilité en m/s
LE1	Entre 0,2m et 1m	Calcaire +/- fracturé	2,8.10 ⁻⁷
LE2	Entre 3m et 4m	Calcaire +/- fracturé	6,2.10 ⁻⁶

La perméabilité du substratum rencontré est très variable étroitement lié à son degré de facturation. Au droit de SC1, il a été rencontré des vacuoles et des veines de calcite, ces éléments augmentent de manière mécanique la perméabilité du substratum calcaire.

Il conviendra ainsi d'être prudent sur les perméabilité citées, celles-ci peuvent être très hétérogènes d'un point à un autre.

4.5. SISMICITÉ

Le Décret n°2010-1254 du 22 octobre 2010, publié au Journal Officiel du 24 octobre 2010, relatif à la prévention du risque sismique classe le site en zone de sismicité 3, site de classe A.

4.6. ALÉAS GEOTECHNIQUES

Les aléas géotechniques sont en relation entre autres avec :

La géologie

- les variations d'épaisseur des différentes couches et notamment de l'approfondissent du toit rocheux,
- les variations latérales de faciès pouvant entraîner des natures de sol localement différentes,
- les refus obtenus tôt du fait de la rencontre du substratum calcaire,
- la possible présence d'une frange d'altération du substratum calcaire,
- Risque Karstique lié au contexte calcaire.

L'hydrogéologie

- les circulations d'eau dans toutes les couches et à toutes les profondeurs au retour de séquences pluvieuses,
- les circulations d'eau à la faveur des horizons plus perméables et fracturés.

La nature des matériaux

- la sensibilité de la couche C1 aux variations hydriques et au remaniement mécanique,
- la sensibilité des mêmes matériaux à l'affouillement,
- la présence du substratum rocheux qui nécessitera la présence d'engins de terrassements lourds.

L'environnement

- le site en zone sismique 3,
- l'impossibilité d'avoir pu réaliser les sondages à la pelle mécanique (du fait de contraintes archéologiques) qui pourrait exposer le projet à des aléas en terme de nature des matériaux rencontrés,
- la présence de bâtiments industriels sur le site (aucun sondage n'a été réalisé sur leur emprise).

5. PRINCIPES GÉNÉRAUX DES TERRASSEMENTS ET DE DRAINAGE POUR LES VOIRIES

5.1. PRINCIPE DE RÉALISATION DES TERRASSEMENTS

Le projet prévoit la réalisation de :

voiries d'accès pour les futurs lots

Les terrassements intéressent :

- le terrassement de la couche C1 en fonction du profil en long du projet,
- ➤ le terrassement de la couche C2 pour l'assise de la couche de forme des voiries.

Nous conseillons:

- le terrassement de la couche C1 à la pelle mécanique puissante puissante en rétro,
- ➢ le terrassements de la couche C2, il sera nécessaire de prévoir l'usage d'engins puissants munis obligatoirement de BRH,
- les zones où apparaîtraient des objets hétéroclites et des poches décomprimées seront purgées et remblayées avec des matériaux 0/80mm type D3, propres, bien gradués (ES > 35, VBS < 0.1 passant à 80 μm < 12%), compactés à q₃,
- la purge des matériaux foisonnés, décomprimés ou organiques,
- ▶ les terrassements seront profilés, avec formes de pentes, de façon à collecter les eaux de ruissellement en un point bas et à les évacuer vers un exutoire. Les talus de déblai, seront pentés à 3H/2V (≈ 33°/H) en phase provisoire, pour une période d'ouverture n'excédant pas 1 semaine sans protection des intempéries,
- ➤ la réalisation des travaux de terrassement à l'abri des intempéries exclusivement. Dans le cas contraire, le chantier s'expose à des difficultés de traficabilité.

5.2. STABILITÉ ET PROTECTION DES TALUS

Pentes de terrassement

La stabilité des talus de remblais et de déblais sera assurée, au grand glissement, par des pentes de 3H/2V (33°/H). Le projet ne prévoit pas des hauteurs de déblais ou de remblais supérieures à 1m.

Dans le substratum calcaire, la stabilité sera fonction du pendage du substratum et de sa fissuration. Pour un talus d'une hauteur supérieure à 2m, un avis pourra être donné par un géotechnicien lors de la phase suivi des travaux

Protections des talus

Les talus situés dans des terrains meubles (frange superficielle) pourront être protégés par

- -la disposition d'un polyane étanche, fiché dans le sol et lesté contre le vent,
- la végétalisation immédiatement après la fin des travaux.

5.3. DISPOSITIFS D'ASSAINISSEMENT ET DE DRAINAGE

En phase chantier ce sont ceux permettant :

- la protection des talus et des plates-formes contre les ruissellements et les précipitations directes,
- la récupération du ruissellement et des eaux infiltrées sur des formes terrassées en forme de pente et drains au droit des fils d'eau, piqués sur les EP,
- la réalisation d'un fossé drainant de part et d'autre de la future voirie.

En phase définitive on veillera à :

 drainer les formes de pente écartant le ruissellement des ouvrages en terre et à les orienter vers des zones de points bas avec récupération pour évacuation dans les réseaux EP.

හය හය හය හය හය

6. ETUDE VOIRIES LOURDES ET LEGERES

6.1. PRÉAMBULE

Le projet consiste en la construction de voiries de circulation pour les futurs lots.

Le calage en altimétrie des voiries n'est pas connu et nous ferons l'hypothèse d'un profil rasant par rapport au terrain naturel (TN).

6.2. PST – ARASE – COUCHE DE FORME

L'arase sera constituée par la couche C2.

Cette arase peut être classée en PST3 AR2.

L'objectif de plate forme est fixé à PF2, c'est à dire à l'obtention d'un EV2>50MPa en partie supérieure de la couche de forme (compte tenu du classement de la PST/Arase, la mise en place d'une couche de réglage sera nécessaire)

L'épaisseur préconisée est la disposition d'une couche de réglage d'au moins 0,1m.

Des essais à la plaque pourront être réalisés pour vérifier ces hypothèses avec :

 EV2 >50 MPa après disposition de la couche de forme (0/31,5 mm D3 sur 0,1 m + géotextile).

6.3. STRUCTURE DE CHAUSSÉE

Le dimensionnement de la structure de la chaussée est fonction du trafic cumulé, de la portance du support, ainsi que de la qualité de la GNT.

Remarque: les structures de chaussée devront faire l'objet d'un dimensionnement (mission G2PRO) lorsque le projet aura été calé et les conditions d'utilisation confirmées (trafic à définir).

6.4. SUGGESTIONS DE RÉALISATION

- les terrassements sont à réaliser par temps sec et à l'abri des intempéries,
- prévoir la réalisation d'une piste de chantier,
- ne pas hésiter à purger toute zone molle ou d'apparence douteuse,
- · interdire la circulation des engins sur les arases,

7. ALEAS SUBSISTANTS A L'ETUDE

Nous rappelons que nous n'avons pas pu effectuer des sondages à la pelle mécanique dû fait de contraintes archéologiques.

Il conviendra à l'entreprise de bien tenir compte de cet aléa qui pourra engendrer des surprofondeur de l'arase du fond de fouille dû à un approfondissement du toit du substratum dans son chiffrage.

Nous recommandons vivement de réaliser une campagne de sondages à la pelle mécanique afin de connaître les variation du toit rocheux et l'épaisseur de la frange superficielle.

Nous rappelons qu'en présence d'un contexte karstique, le risque de cavité ne peut être exclu. Nos investigations n'ont pas révélé d'anomalies, toutefois cette analyse est à compléter par la réalisation de sondages à la pelle mécanique.

श्राव्य श्राव्य श्राव्य

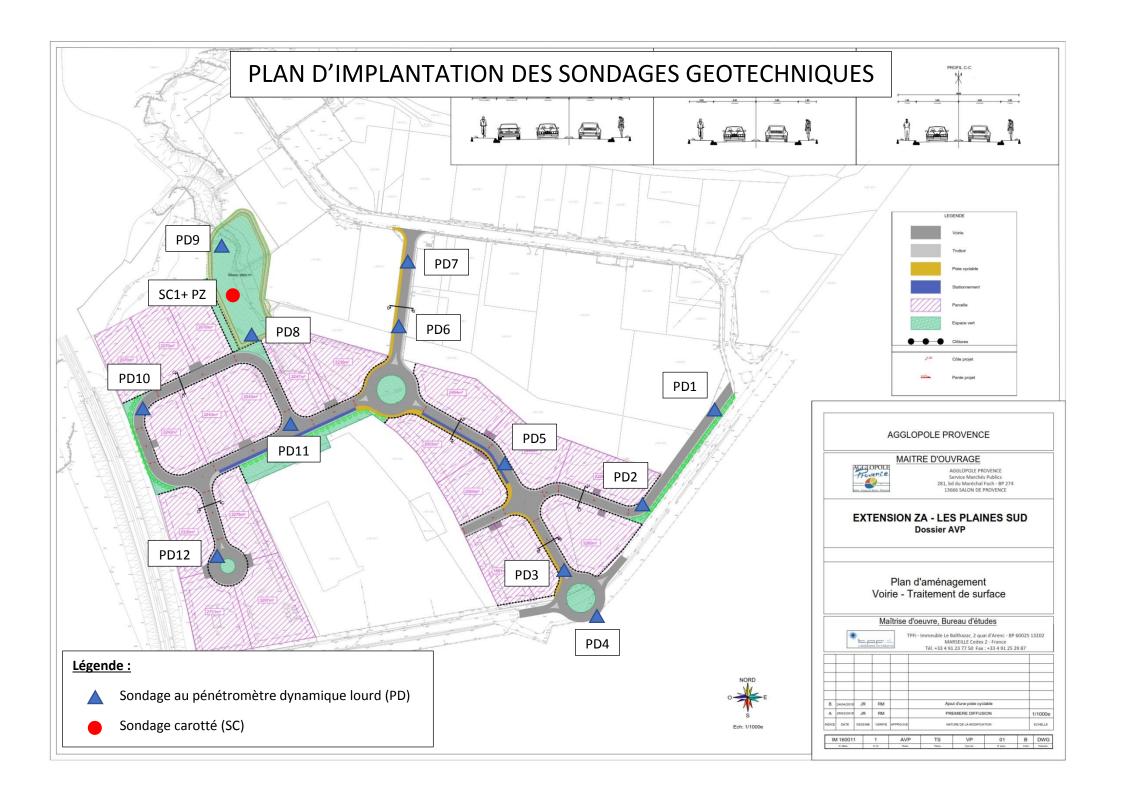
Notre mission se termine à la remise du présent rapport sauf demandes de renseignements complémentaires entrant dans le cadre de la présente mission.

Nous restons à la disposition de **MAMP**, et de tous les intervenants pour tous renseignements complémentaires.

Dressé par le chargé d'étude :

Sur

Geoffrey CADRAN


Vérifié par l'ingénieur soussigné :

Alexandre GARDAS

ANNEXES

ANNEXE 1

Plan d'implantation des sondages et essais

ANNEXE 2

Résultats des essais au pénétromètre lourd

SAINT CHAMAS (13)
9 Machine: HYDROFORE 200

Profondeur: 0,00 - 0,20 m Pénétromètre : PD1

Prof. (m)	Outil	Niveau d'eau	Nombr	e de c	oups							qd MPa	ı							Commentaires	AN LUTZ S.A
			0	50	100	(0,1			1					10				100		JE/
0	énétr nètre ynam	ecté		1		500	1	1 1	1 1 1	1 1 1	-			1 1			1	1 1	1 1 1		giciel
	F 2 2	lét		1		- 1	1	1 1	1 1 1	1 1 1	1	1	1	1 1	1 1 1 1	1			1 1 1	Refus à 0.2 m	P

SAINT CHAMAS (13)

Machine: HYDROFORE 200

Contrat: C.18.50204

Pénétromètre : PD2

Prof. (m)	Outil	Niveau d'eau	Nombre de	coups			ı d Pa		Commentaires	N LUTZ S.A
		i '	0 50	100	0,1	1	10	100		JE/
	Pénétr omètre dynam	étecté	1		500				Refus à 0.2 m	ogiciel-

SAINT CHAMAS (13)

Machine: HYDROFORE 200

Profondeur : 0,00 - 0,40 m

EXGTE 3.19/GTE 1/20 Pénétromètre : PD3

Prof. (m)	Outil	Niveau d'eau	Non	nbre de co	oups			qd MPa		Commentaires - Y. G.
			0	50	100	0,1	1	10	100	21
0	nétromètre ynamique ırd àpointe	eau détecté	17	7		500				N NEGICIEI 7EAN Refus à 0.4 m
	Pé lou	nive		1				1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	Refus à 0.4 m

SAINT CHAMAS (13)
2019 Machine: HYDROFORE 200 Date début : 21/05/2019 Profondeur : 0,00 - 0,40 m

EXGTE 3.19/GTE 1/20 Pénétromètre : PD4

Prof. (m)	Outil	Niveau d'eau	Nomb	re de c	oups						qd ⁄/Pa							Commentaires	S.A - www.j
			0	50	100	0,1			1				10			100)		Z
0	Pénétromètre dynamique lourd àpointe	niveau détecté	25	1		500	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1		1 1 1 1 1 1 1 1 1		1	 			Refus à 0.4 m	Logiciel JEAN LU

Metropole Aix Marseille Provence Extension de la ZA des Plaines Sud SAINT CHAMAS (13) Machine: HYDROFORE 200

Date début : 21/05/2019 Machine : HYDROFORE 200 Profondeur : 0,00 - 0,40 m

Prof. (m)	Outil	Niveau d'eau	Nomi	bre de c	oups								ı d Pa									Commentaires
			0	50	100	0,	1				1						10				100	
0	Pénétromètre dynamique lourd àpointe	détecté	2	5			1 1	1	1 1	1 I 1 I	1 1 1					1 1	11		 1 1 1	1 1 1 1 1 1	1 1 1	
	Pénétromè dynamiqu lourd àpoir	iveau				500	1 1	1 1 1	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1	1 1	1 1 1 1 1 1	1	1 1 1	 /		1 1 1	Refus à 0.4 m

Pénétromètre : PD5

Intzsa.fr

SAINT CHAMAS (13)

Machine: HYDROFORE 200

Contrat: C.18.50204

Pénétromètre : PD6

Prof. (m)	Outil	Niveau d'eau	Nomi	bre de co	oups			qd MPa		Commentaires	N LUTZ S.A
			0	50	100	0,1	1	10	100		JE/
	Pénétr omètre dynam	étecté		 		500				Refus à 0.2 m	-ogiciel

 SAINT CHAMAS (13)

 Date début : 21/05/2019
 Machine : HYDROFORE 200
 Profondeur : 0,00 - 0,80 m

Pénétromètre : PD7 EXGTE 3.19/GTE

Prof. (m)	Outil	Niveau d'eau	Nomb	re de co	oups			Commentaires				
			0	50	100	0,1		1		10	100	<u>-</u>
0	dynamique e perdue	niveau détecté	20	1 1 1 1 1								2 A vacuus
	Pénétromètre dynamique lourd à pointe perdue	Pas de niv	9	1 1 1 1 1		500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Refus à 0.8 m

SAINT CHAMAS (13)
9 Machine: HYDROFORE 200

Contrat: C.18.50204

Pénétromètre : PD8

Prof. (m)	Outil	Niveau d'eau	Nombre de	e coups			Commentaires	AN LUTZ S.A		
			0 50	100	0,1	1	10	100		JE/
0	Pénétr omètre dynam	étecté	1		500				Refus à 0.2 m	Logiciel

SAINT CHAMAS (13)
9 Machine: HYDROFORE 200

Contrat: C.18.50204

Pénétromètre : PD9

Prof. (m)	Outil	Niveau d'eau	Nombre de co	oups		q M	Commentaires	AN LUTZ S.A		
			0 50	100	0,1	1	10	100		JE/
0	Pénétr omètre dynam	étecté	1		500				Refus à 0.2 m	Logiciel

SAINT CHAMAS (13)
9 Machine: HYDROFORE 200

Contrat: C.18.50204

Pénétromètre : PD10

Prof. (m)	Outil	Niveau d'eau	Nombre de co	ups		M	Commentaires			
			0 50	100	0,1	1	10	100		JE/
0	Pénétr omètre dynam	étecté	1	į	500				Refus à 0.2 m	Logiciel

SAINT CHAMAS (13)

Machine: HYDROFORE 200

Profondeur: 0,00 - 0,20 m Pénétromètre : PD11

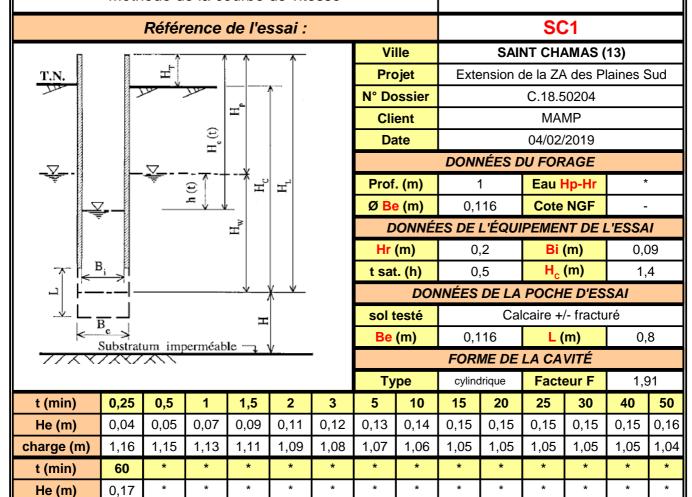
Prof. (m)	Outil	Niveau d'eau	Nombr	re de c	oups	qd MPa										Commentaires	AN LUTZ S.A					
			0	50	100	0,	1			1					10					100		JE/
0	Pénétr omètre dynam	étecté		1		500	1 1	1 1	1 1 1	11	-	-	1 1	1 1 1 1		1	1	1	 	1 1 1	Refus à 0.2 m	-ogiciel

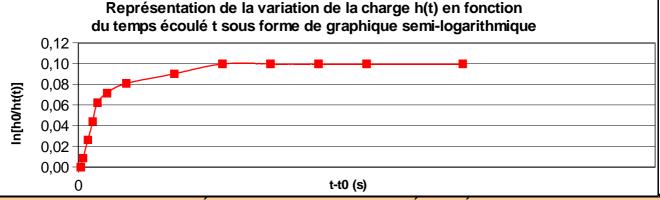
SAINT CHAMAS (13)
9 Machine: HYDROFORE 200

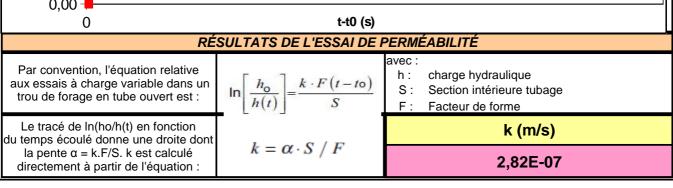
Contrat: C.18.50204

Pénétromètre : PD12

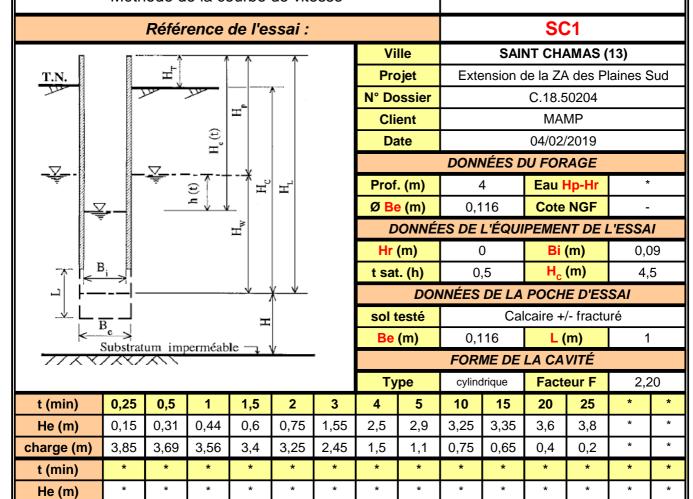
Prof. (m)	Outil	Niveau d'eau	Nombre de co	ups		M	Commentaires			
			0 50	100	0,1	1	10	100		JE/
0	Pénétr omètre dynam	étecté	1	į	500				Refus à 0.2 m	Logiciel

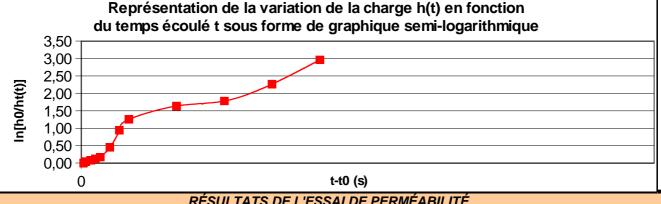

ANNEXE 3

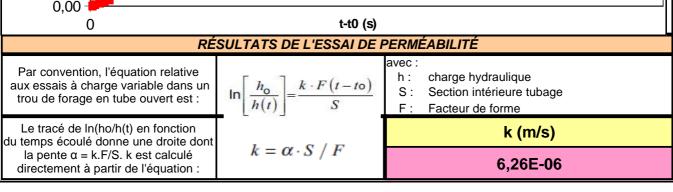

Résultats des essais de perméabilité LEFRANC


Essai de perméabilité à l'eau dans un forage à ciel ouvert - NF EN ISO 22282-2

Essai à charge variable Méthode de la courbe de vitesse


charge (m)


1,03


Essai de perméabilité à l'eau dans un forage à ciel ouvert - NF EN ISO 22282-2

Essai à charge variable Méthode de la courbe de vitesse

charge (m)

ANNEXE 4

Coupe du sondage carotté + planche photographique associée

Métropole Aix Marseille Provence Extension de la ZA des Plaines Sud SAINT CHAMAS (13) 4/02/2019 Machine: H750

1/50 Forage : SC1 EXGTE 3.19/GTE

Prof (m)	Lithologie	Formation géologique	Eau	Tubage	Equipement forage	Outil	Récupération %	RQD
0	Llimon marron à graviers 0,25 m							
1_	Calcaire déstrucuré tendre blanc avec blocs Ø max 8 cm						100	1
•	Calcaire fragmenté						100	0
3-	777 818 181 181 181 181 181 181						100	58
4-		en (n4U)				16 mm	100	20
5-	Calcaire à veine de calcite	Formation du Barrémien (n4U)	Forage à l'eau	Néant	Néant	Carottier rotatif Ø 116 mm	100	40
6-	A A \$1 A 1 A 1 A \$1 A 1 \$1 A 1 \$1 A 1 \$1 A 1 \$1 A 1 \$1 A 1	Formai				Caro	100	0
	1 A I A I A I A I A I A I A I A I A I A						100	35 all lutzsa.fr
							100	90 8 - Z S S A - www.jea
8-	Calcaire à grosses vacuoles remplies de calcite (vacuole centimétrique à décimétrique) O O O O O O O O O						100	90 90 90 90 90 90 90 90 90 90 90 90 90 9

MAMP

Saint Chamas (13)

PLANCHE PHOTOGRAPHIQUE du sondage de reconnaissance géologique

SC1 (0 - 9 m)

ANNEXE 5

Missions géotechniques

ANNEXE 1

Classification des missions types d'ingénierie géotechnique (NF P 94-500 novembre 2013)

L'enchaînement des missions d'ingénierie géotechnique (étapes 1 à 3) doit suivre les étapes de conception et de réalisation de tout projet pour contribuer à la maîtrise des risques géotechniques. Le maître d'ouvrage ou son mandataire doit faire réaliser successivement chacune de ces missions par une ingénierie géotechnique. Chaque mission s'appuie sur des données géotechniques adaptées issues d'investigations géotechniques appropriées.

ÉTAPE 1 : ÉTUDE GÉOTECHNIQUE PRÉALABLE (G1)

Cette mission exclut toute approche des quantités, délais et coûts d'exécution des ouvrages géotechniques qui entre dans le cadre de la mission d'étude géotechnique de conception (étape 2). Elle est à la charge du maître d'ouvrage ou son mandataire. Elle comprend deux phases :

Phase Étude de Site (ES)

Elle est réalisée en amont d'une étude préliminaire, d'esquisse ou d'APS pour une première identification des risques géotechniques d'un site

- Faire une enquête documentaire sur le cadre géotechnique du site et l'existence d'avoisinants avec visite du site et des alentours.
- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter
- Fournir un rapport donnant pour le site étudié un modèle géologique préliminaire, les principales caractéristiques géotechniques et une première identification des risques géotechniques majeurs.

Phase Principes Généraux de Construction (PGC)

Elle est réalisée au stade d'une étude préliminaire, d'esquisse ou d'APS pour réduire les conséquences des risques géotechniques majeurs identifiés. Elle s'appuie obligatoirement sur des données géotechniques adaptées.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport de synthèse des données géotechniques à ce stade d'étude (première approche de la ZIG, horizons porteurs potentiels, ainsi que certains principes généraux de construction envisageables (notamment fondations, terrassements, ouvrages enterrés, améliorations de sols).

ÉTAPE 2 : ÉTUDE GÉOTECHNIQUE DE CONCEPTION (G2)

Cette mission permet l'élaboration du projet des ouvrages géotechniques et réduit les conséquences des risques géotechniques importants identifiés. Elle est à la charge du maître d'ouvrage ou son mandataire et est réalisée en collaboration avec la maîtrise d'œuvre ou intégrée à cette dernière. Elle comprend trois phases :

Phase Avant-projet (AVP)

Elle est réalisée au stade de l'avant-projet de la maîtrise d'œuvre et s'appuie obligatoirement sur des données géotechniques adaptées.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport donnant les hypothèses géotechniques à prendre en compte au stade de l'avant-projet, les principes de construction envisageables (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, améliorations de sols, dispositions générales vis-à-vis des nappes et des avoisinants), une ébauche dimensionnelle par type d'ouvrage géotechnique et la pertinence d'application de la méthode observationnelle pour une meilleure maîtrise des risques géotechniques.

Phase Projet (PRO)

Elle est réalisée au stade du projet de la maîtrise d'œuvre et s'appuie obligatoirement sur des données géotechniques adaptées suffisamment représentatives pour le site.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un dossier de synthèse des hypothèses géotechniques à prendre en compte au stade du projet (valeurs caractéristiques des paramètres géotechniques en particulier), des notes techniques donnant les choix constructifs des ouvrages géotechniques (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, améliorations de sols, dispositions vis-à-vis des nappes et des avoisinants), des notes de calcul de dimensionnement, un avis sur les valeurs seuils et une approche des quantités.

Phase DCE / ACT

Elle est réalisée pour finaliser le Dossier de Consultation des Entreprises et assister le maître d'ouvrage pour l'établissement des Contrats de Travaux avec le ou les entrepreneurs retenus pour les ouvrages géotechniques.

- Établir ou participer à la rédaction des documents techniques nécessaires et suffisants à la consultation des entreprises pour leurs études de réalisation des ouvrages géotechniques (dossier de la phase Projet avec plans, notices techniques, cahier des charges particulières, cadre de bordereau des prix et d'estimatif, planning prévisionnel).
- Assister éventuellement le maître d'ouvrage pour la sélection des entreprises, analyser les offres techniques, participer à la finalisation des pièces techniques des contrats de travaux.

Tableau 2 — Classification des missions d'ingénierie géotechnique (suite)

ÉTAPE 3 : ÉTUDES GÉOTECHNIQUES DE RÉALISATION (G3 et G 4, distinctes et simultanées)

ÉTUDE ET SUIVI GÉOTECHNIQUES D'EXECUTION (G3)

Cette mission permet de réduire les risques géotechniques résiduels par la mise en œuvre à temps de mesures correctives d'adaptation ou d'optimisation. Elle est confiée à l'entrepreneur sauf disposition contractuelle contraire, sur la base de la phase G2 DCE/ACT. Elle comprend deux phases interactives :

Phase Étude

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Étudier dans le détail les ouvrages géotechniques : notamment établissement d'une note d'hypothèses géotechniques sur la base des données fournies par le contrat de travaux ainsi que des résultats des éventuelles investigations complémentaires, définition et dimensionnement (calculs justificatifs) des ouvrages géotechniques, méthodes et conditions d'exécution (phasages généraux, suivis, auscultations et contrôles à prévoir, valeurs seuils, dispositions constructives complémentaires éventuelles).
- Élaborer le dossier géotechnique d'exécution des ouvrages géotechniques provisoires et définitifs : plans d'exécution, de phasage et de suivi.

Phase Suivi

- Suivre en continu les auscultations et l'exécution des ouvrages géotechniques, appliquer si nécessaire des dispositions constructives prédéfinies en phase Étude.
- Vérifier les données géotechniques par relevés lors des travaux et par un programme d'investigations géotechniques complémentaire si nécessaire (le réaliser ou en assurer le suivi technique, en exploiter les résultats).
- Établir la prestation géotechnique du dossier des ouvrages exécutés (DOE) et fournir les documents nécessaires à l'établissement du dossier d'interventions ultérieures sur l'ouvrage (DIUO)

SUPERVISION GÉOTECHNIQUE D'EXECUTION (G4)

Cette mission permet de vérifier la conformité des hypothèses géotechniques prises en compte dans la mission d'étude et suivi géotechniques d'exécution. Elle est à la charge du maître d'ouvrage ou son mandataire et est réalisée en collaboration avec la maîtrise d'œuvre ou intégrée à cette dernière. Elle comprend deux phases interactives :

Phase Supervision de l'étude d'exécution

— Donner un avis sur la pertinence des hypothèses géotechniques de l'étude géotechnique d'exécution, des dimensionnements et méthodes d'exécution, des adaptations ou optimisations des ouvrages géotechniques proposées par l'entrepreneur, du plan de contrôle, du programme d'auscultation et des valeurs seuils.

Phase Supervision du suivi d'exécution

- Par interventions ponctuelles sur le chantier, donner un avis sur la pertinence du contexte géotechnique tel qu'observé par l'entrepreneur (G3), du comportement tel qu'observé par l'entrepreneur de l'ouvrage et des avoisinants concernés (G3), de l'adaptation ou de l'optimisation de l'ouvrage géotechnique proposée par l'entrepreneur (G3).
- donner un avis sur la prestation géotechnique du DOE et sur les documents fournis pour le DIUO.

DIAGNOSTIC GÉOTECHNIQUE (G5)

Pendant le déroulement d'un projet ou au cours de la vie d'un ouvrage, il peut être nécessaire de procéder, de façon strictement limitative, à l'étude d'un ou plusieurs éléments géotechniques spécifiques, dans le cadre d'une mission ponctuelle. Ce diagnostic géotechnique précise l'influence de cet ou ces éléments géotechniques sur les risques géotechniques identifiés ainsi que leurs conséquences possibles pour le projet ou l'ouvrage existant.

- Définir, après enquête documentaire, un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Étudier un ou plusieurs éléments géotechniques spécifiques (par exemple soutènement, causes géotechniques d'un désordre) dans le cadre de ce diagnostic, mais sans aucune implication dans la globalité du projet ou dans l'étude de l'état général de l'ouvrage existant.
- Si ce diagnostic conduit à modifier une partie du projet ou à réaliser des travaux sur l'ouvrage existant, des études géotechniques de conception et/ou d'exécution ainsi qu'un suivi et une supervision géotechniques seront réalisés ultérieurement, conformément à l'enchaînement des missions d'ingénierie géotechnique (étape 2 et/ou 3).